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Abstract

In this thesis, we consider the problem of hardware verification, with a focus on security

properties of RISC-V processors. We target proofs at the microarchitectural level,

reasoning directly on the hardware’s definition. We follow an approach based on proof

assistants, versatile tools used for producing high-confidence proofs. Their flexibility

allows us to express and verify arbitrary properties on designs. This differs from the

more rigid forms that formal verification commonly takes in the industry, where it

tends to rely on specialized tools with set scopes. The flexibility of proof assistants

comes at a cost. First, they are not specialized to the problem of hardware verification

— all the domain-specific knowledge needs to be formalized before any verification

work can proceed. Furthermore, they are complex tools with a prohibitive learning

curve. In this work, we consider both of these concerns.

The first concern we outlined is that proof assistants must be taught about hardware

design. Before anything else, the required notions must be defined within the system

— critically, a formal semantics of a hardware description language must be given. In

this thesis, we work both with an academic language built from the ground up with a

formal semantics (Kôika) and a more industrial language whose semantics we had to

formalize ourselves (FIRRTL).

The second concern is related to the complexity of proof assistants. Our answer

consists of frameworks built around the semantics of hardware description languages.

Both manual and automatic (chiefly SMT-based) options are explored. In principle,

such frameworks can cover the same ground as formal tools used in the industry and

some more.

We illustrate this methodology by formally verifying security properties of a RISC-V

processor within the Coq proof assistant.

Keywords: formal methods • Coq • hardware

verification • microarchitecture • RISC-V
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Résumé substanciel en français

Contexte

Nos sociétés ont récemment été le théâtre d’une informatisation brusque et massive.

Les aspects stratégiques ne sont pas en reste. Désormais, la gestion de transactions

bancaires et de données médicales, la surveillance de réacteurs nucléaires, ou encore

la communication privée des membres du gouvernement sont régies par des systèmes

informatiques.

L’informatique est fragile. La moindre erreur de conception peut ouvrir la porte à

des vulnérabilités, des failles qui sont autant d’armes dans l’arsenal d’attaquants que

l’échelle des enjeux ne manque pas d’attirer. La recherche et la suppression de ces

vulnérabilités est l’une des priorités de la sécurité informatique, qui occupe de fait une

place croissante dans nos sociétés.

Les concepteurs de langages informatiques tiennent compte de ces aspects sécuri-

taires. Ainsi, la majorité des compilateurs modernes sont équipés de mécanismes tels

que des vérificateurs de typage et de vérificateurs d’emprunt. Les garanties réduites

qu’offrent ces outils peuvent être étendues par le biais de jeux de tests, dont le rôle est

d’assurer que le comportement effectif d’un programme donné dans des circonstances

précises correspond bien à celui escompté. Telle quelle, cette approche reste limitée :

le champ des possibles est trop vaste pour être couvert par un jeu de tests réaliste.

Ces mécanismes ne sont en fait que la partie émergée des méthodes formelles, un

domaine d’étude portant sur l’obtention de preuves à haut degré de fiabilité. Les

méthodes formelles englobent un large éventail de techniques et d’outils, allant de

vérificateurs automatiques pour des fragments simples de la logique aux assistants

de preuves, des outils généralistes dont le rôle est de guider un utilisateur dans la

construction de preuves de propositions arbitraires.

L’application des méthodes formelles à la validation de logiciel a démontré son

efficacité : par le passé, des systèmes complexes tels que des compilateurs ou des

micro-noyaux ont pu être vérifiés de manière exhaustive.

Toutefois, que le logiciel soit vérifié ou non, son exécution effective est nécessaire-

ment incarnée : les calculs qu’il requiert sont réalisés électroniquement, et le matériel

13



Résumé

qui réalise ces calculs est un assemblage délicat de composants hétérogènes (processeur,

carte mère, périphériques, etc.). Chacun de ces composants expose une interface spé-

cifiée de manière plus ou moins libre au reste du système. In fine, le logiciel dépend

lui aussi de ces interfaces, à travers la vue abstraite que lui en donne le système. Par

conséquent, les preuves portant sur des comportements logiciels reposent sur des hy-

pothèses, souvent implicites, au sujet du comportement du matériel.

Les hypothèses matérielles sont cruciales, dans la mesure où la moindre erreur

dans les fondations peut mettre en péril tout l’édifice. Elles le sont d’autant plus si l’on

considère qu’il n’est pas possible d’apporter de correctifs au matériel, contrairement au

logiciel. Les méthodes formelles s’intègrent dès la phase de conception du matériel et

constituent une réponse adaptée à ces besoins de sécurité et de stabilité.

Malgré certaines différences, la vérification de logiciel et la vérification de matériel

restent des sujets connexes. Tout comme pour la conception de logiciel, certaines formes

limitées de vérification formelle sont intégrées à l’outillage usuel. Ainsi, les langages

de description du matériel sont typés. Par ailleurs, il existe un certain nombre d’outils

formels exclusifs au matériel. C’est par exemple le cas des vérificateurs d’équivalence,

des outils visant à établir l’équivalence fonctionnelle de deux circuits (un tel outil peut

notamment être utilisé pour valider une optimisation).

Bien que les méthodes actuellement utilisées dans l’industrie remplissent de façon

satisfaisante les attentes placées en elles, elles restent rigides et donc limitantes. Au

demeurant, les outils employés ne sont pas vérifiés formellement, ce qui restreint

quelque peu la fiabilité de leurs résultats. La mise à contribution d’assistants de

preuves permettrait de répondre à ces deux points, mais les approches basées sur ces

outils se doivent de répondre à certains défis pour être viables, notamment sur des

questions de performance et d’ergonomie.

Objectifs et contenu

Le contexte introduit ci-dessus mène naturellement à la question de recherche au centre

de cette thèse.

Question de recherche

Comment vérifier formellement, avec un assistant de preuve, des implémentations

de mécanismes de sécurité pour processeurs décrites au niveau des transferts de
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Résumé

registres ?

Il y a principalement trois raisons pour lesquelles nous souhaitons que la vérification

ait lieu dans un assistant de preuve :

1. Du fait de la base de confiance plus limitée sur laquelle ils reposent, les assistants

de preuve peuvent être considérés comme plus fiables que d’autres types d’outils

que l’on trouve dans l’industrie ;

2. En France, l’ANSSI, qui est l’autorité en charge de la certification de sécurité

informatique Critères Communs [1], reconnaît uniquement certains outils comme

l’assistant de preuves Coq pour EAL7, le degré de certification le plus élevé [2] ;

3. L’expressivité des assistants de preuve dépasse celle des outils plus spécialisés —–

en particulier, ils peuvent introduire des abstractions pour contourner le problème

d’explosition combinatoire des états [3].

Le principal défi de la vérification formelle basée sur des assistants de preuve est

la performance du processus de vérification. Les méthodologies proposées ne doivent

pas fonctionner uniquement sur des exemples simples mais doivent supporter pour

des charges de travail réalistes. À cette fin, nous nous appuyons sur des méthodes au-

tomatiques utilisées dans l’industrie, telles que les solveurs SMT. Nous leur déléguons

des objectifs de bas niveau, tout en continuant à nous appuyer sur l’expressivité des

assistants de preuve pour construction de la structure de haut niveau de la preuve.

Nous concentrons nos efforts sur la vérification de la définition même de pro-

cesseurs, et plus précisément de leur microarchitecture. Ainsi, nous évitons les écueils

des raisonnements basés sur des modèles : il existe souvent un écart entre le modèle et

l’objet qu’il représente.

Nous nous limitons à la vérification de propriétés portant sur la définition mi-

croarchitecturale du matériel. En particulier, nous ne traitons pas la vérification de la

préservation de la sémantique au long de la chaîne de production qui conduit cette

définition au silicium.

Contributions

Nos contributions peuvent être résumées comme suit :

a) Nous introduisons une infrastructure pour vérifier des propriétés arbitraires

sur des circuits définis dans le langage de description du matériel Kôika —
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la méthodologie de vérification est basée sur des applications séquentielles de

transformations de code vérifiées, menant à une simplification progressive du

circuit ;

b) Nous démontrons la viabilité de cette méthodologie en l’appliquant à la vérifica-

tion formelle d’un mécanisme de sécurité matériel attaché à un processeur RISC-V

pipeliné et synthétisable ;

c) Nous enrichissons cette méthodologie avec des procédures automatiques basées

sur des solveurs SMT ;

d) Nous portons le langage de description du matériel FIRRTL au sein de l’assistant

de preuve Coq sous le nom de COQQTL — en d’autres termes, nous formalisons

sa sémantique .

Les points a) et b) correspondent aux travaux accepté pour présentation à la con-

férence CSF’23 [4]. Ils avaient précédemment fait l’objet d’une présentation au work-

shop SILM’22 [5]. Le point c) décrit une extension non-publiée de ces travaux. d) se

rapporte à un projet en cours que nous entendons soumettre prochainement.

Résumé

Le corps de cette thèse est divisé en six chapitres rédigés en anglais.

Le Chapitre 1 introduit le sujet de cette thèse avant de résumer succinctement son

contenu, selon le modèle établi par le chapitre courant.

Dans le Chapitre 2, nous posons les bases nécessaires à la compréhension de nos

travaux. Plus concrètement, nous introduisons des notions relatives à l’architecture

des ordinateurs, à la sécurité informatique, ainsi qu’aux méthodes formelles. Nous

discutons brièvement de ce qui se trouve à l’intersection de ces trois domaines, avant

de détailler le fonctionnement de Kôika, un langage de description du matériel à la

sémantique formalisée.

Dans le Chapitre 3, nous dressons un état de l’art des domaines pertinents compte

tenu de l’orientation de cette thèse. Nous positionnons par ailleurs nos travaux rela-

tivement à l’existant.

Le Chapitre 4 concerne nos travaux liés au langage Kôika précédemment mentionné.

En particulier, nous décrivons comment nous avons étendu le projet Kôika pour le

rendre adapté à la vérification matérielle. La méthodologie résultant de ces efforts est

applicable à des problèmes très généraux de vérification de circuits. Nous démontrons
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ses capacités au travers de la vérification d’un mécanisme de sécurité intégré à un

processeur RISC-V. Par la suite, nous expliquons comment nous avons enrichi cette

méthodologie avec des procédures automatiques. Ces procédures se sont révélées très

efficaces en pratique pour réduire la quantité d’effort manuel requise.

Dans le Chapitre 5, nous présentons COQQTL, notre port du langage FIRRTL dans

l’assistant de preuve Coq. En comparaison avec Kôika, qui est un projet académique,

FIRRTL a un certain nombre de caractéristiques qui le rendent adapté à l’industrie, où

il a déjà été employé avec succès. En particulier, il permet la définition de modules,

des composants réutilisables d’un circuit à l’autre. Cette notion est utile tant pour la

conception de circuits que pour leur vérification, une preuve réalisée sur un module

s’appliquant à chacune de ses instances.

Pour finir, le Chapitre 6 résume le travail effectué et propose un certain nombre de

perspectives à plus ou moins long terme.
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Chapter 1

Introduction

1.1 Context

We live in a time when software is omnipresent, for better or worse. From the handling

of banking transactions and the management of medical data to the communication of

heads of state and the surveillance of nuclear reactors, few critical sectors are not deeply

impacted by it. This pervasiveness of software makes it a prime target for malevolent

actors.

Software is fragile. Design oversights, programming mistakes, or even hostile

intents may lead to defects, each an additional tool in the attackers’ arsenal. Techniques

for ensuring that software is defect-free are therefore of paramount importance.

Most programming languages include facilities for avoiding common classes of

bugs, such as typing systems or borrow checkers. These basic checks can be comple-

mented with test suites, ensuring that programs behave as expected in all explicitly

given cases. The testing process usually cannot be exhaustive — the state space is too

large.

These techniques are shadows of the much richer domain of formal methods, which

is concerned with constructing high-assurance proofs. Formal methods encompass a

wide gamut of tools and methods, ranging from fully automatic decision procedures

for simple fragments of logic to proof assistants, tools assisting a user in constructing

mechanically checked proofs for arbitrary properties.

In their full generality, formal methods can reach further than traditional tools: they

open ways of generalizing, for instance by reducing huge state spaces to a manageable

set of representatives. These tools make it possible to formally show that the behavior

of a piece of software corresponds to its specification. Large software projects such as

compilers or microkernels have been verified this way.

However, software does not run in a vacuum. There needs to be a physical basis

for the computations — the hardware. In this complex heterogeneous system, each
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component exposes an interface to the others based on more or less formal contracts

about its behavior. The actual complexity of the system is usually hidden from the

programmer, who accesses it through abstractions, which come with a set of assump-

tions. That is, software can only ever be defect-free under the hypotheses it expects

the hardware to fulfill. These hypotheses about hardware properties should better

hold, as shaky foundations jeopardize the whole structure. Unlike in software, errors

in hardware design cannot be patched away: once the physical device is produced,

its design is fixed. The unalterable nature of hardware means that its verification is a

critical problem.

Hardware is described through specialized languages. A piece of hardware starts

as a bunch of text files before ending up as a physical implementation. There is a large

gap between these text files and the physical world, which must be crossed at some

point. Along the way, many things can go wrong: even if the initial definition is correct,

applying a faulty optimization pass further down the line or mixing up two wires in the

physical implementation would void any formal guarantee. Trusting hardware is as

much trusting the initial definition as it is trusting the process that takes this definition

down to a physical object.

Hardware verification is not entirely removed from software verification, yet subtle

differences remain between these tasks. Just like in software, some limited forms of

formal methods are commonly applied to hardware design. Some of these are the same

as those used in software, such as type systems or testing facilities. Others are hardware

exclusives. For instance, equivalence checkers are automatic tools for verifying that

two hardware descriptions are equivalent. They come in handy for verifying that

an optimization pass does not change the functional behavior of hardware, a risk

we previously outlined. Another example is assertion-based verification, wherein

formal expectations about the behavior can be inlined directly within the description.

Checking procedures may be used for verifying the assertions, though sometimes only

in a bounded way (it may, for instance, only check only the states reachable in the first

𝑥 ticks).

Although the current manifestations of formal methods in hardware are efficient,

they have their limits. There are whole families of problems that are effectively out

of their reach. On the other hand, despite their flexibility, proof assistants are not

commonly used for hardware verification. This absence results from the insufficient

support from proof assistant for this task (there are no prominent ready-made, low-
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friction libraries for importing and verifying circuits) and the complexity of these tools.

This complexity is also a problem for software verification: building a verified program

costs much more than building its unverified counterpart. These additional costs can

be seen as the price to pay for security; however, they are so high that they are generally

not seen as worth the benefits outside of some critical applications such as avionics or

nuclear safety.

1.2 Objectives and contents

The context described above naturally leads to the question that underpins this thesis.

Research question

How to formally verify implementations of security mechanisms for processors

at the register transfer level of description within a proof assistant?

There are three core reasons why we want verification to take place within a proof

assistant:

1. Proof assistants have a limited Trusted Computing Base (TCB) compared with the

more specialized tools found in the industry, making them more trustable;

2. ANSSI, the French certifying authority for the Common Criteria for Information

Technology Security Evaluation [1], recognizes certain formal tools for the highest

level of certification (EAL7) — the Coq proof assistant is among these tools [2];

3. Proof assistants are generalist systems with an expressiveness that goes beyond

that of specialized tools — in particular, they can introduce arbitrary abstractions

to work around the state explosion problem [3].

The main challenge of proof assistant-based formal verification is the performance

of the verification process: getting a methodology that works on simple examples to

scale to realistic workloads is non-trivial. To improve this state of affairs, we rely on

automatic methods used in the industry, such as SMT-solvers. We dispatch them goals

that are within their reach, while the expressiveness of proof assistants gives us fine

control over the high-level structure of the proof.

We focus on microarchitectural verification, as reasoning on models leaves a dis-

tance that allows errors to creep in. More specifically, our work considers the direct

verification of the very definitions of circuits, which ensures that this distance is kept
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at a minimum. We do not prove the whole compilation chain correct for the physical

implementation: our focus is only on the higher strata.

1.3 Contributions

Our contributions can be summarized as follows:

a) We design a framework around the Kôika hardware description language to

specify and implement security mechanisms. In addition, it makes it possible

to define and verify security properties that the implementation is supposed to

enforce — the methodology we implement relies on a series of verified code

transformation passes that progressively simplify the designs;

b) We showcase this methodology by verifying a hardware-based security mecha-

nism integrated into a synthesizable processor;

c) We add support for automatic procedures for handling most of the proof without

the need for user intervention;

d) We port the FIRRTL language to the Coq proof assistant — i.e., we mechanize the

semantics of this language.

a) and b) correspond to work that was published at the CSF’23 conference [4], an

early version of which had previously been presented at the SILM’22 workshop [5]. c)

is an unpublished extension of this research. d) describes ongoing work that we plan

to submit shortly.

1.4 Outline

The remainder of this thesis is split into five chapters.

We begin by introducing background information in Chapter 2. The rest of the thesis

builds upon this information. In particular, we introduce basic notions of computer

architecture, cybersecurity, and formal methods. We briefly discuss their intersection

in a dedicated section before considering a concrete example of a formal hardware

description language.

Then, in Chapter 3, we explore the state of the art of relevant domains and position

this thesis relative to it.
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Chapter 4 is about our work involving Kôika, a hardware description language

with a formal semantics. We describe a methodology for formally verifying arbitrary

hardware properties, and we apply it to verifying a security mechanism on a pipelined

RISC-V processor. Furthermore, we explain how we add support for a workflow that

delegates most proofs to an automatic procedure. This makes verification less tedious

than through the original, essentially manual process.

Chapter 5 presents our work porting the FIRRTL language to Coq as COQQTL.

This language has some features that Kôika lacked to make it a serious contender

for industrial hardware design. In particular, it supports the definition of reusable

modules, which give a natural way of abstracting designs. Like in Kôika, we design

a framework for reasoning about COQQTL designs. Although this framework looks

quite similar to the one we built for Kôika, it follows a much more automation-heavy

approach from the outset.

Finally, Chapter 6 concludes this thesis. It summarizes the work we described in

the previous chapters and introduces a number of ideas for future work.
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Chapter 2

Background

In this chapter, we introduce the ground concepts on top of which the rest of this thesis

builds. This thesis is about enabling hardware designers to formally verify that security

properties hold for their designs. As such, it draws upon ideas stemming from three

distinct fields of computer science:

• Computer architecture

• Cybersecurity

• Formal methods

Chapter outline

We begin with an introduction to these three fields, starting with hardware archi-

tecture in Section 2.1, continuing with cybersecurity in Section 2.2, and finishing

with formal methods in Section 2.3. We explore their intersection in more detail

in Section 2.4. We finish by presenting Kôika, a formal language for designing

hardware, in Section 2.5. We adapted this language for our use during this thesis,

as discussed in Chapter 4.

2.1 Computer architecture

Computer architecture is the branch of computer science that focuses on the design

and implementation of computing machines. In this thesis, we focus more specifically

on processors.

Section outline
This section introduces all relevant computer architecture-related concepts. It

opens with a brief outline of the history of computer architecture in Subsec-

tion 2.1.1 before delving into Hardware Description Languages (HDLs) in Sub-

section 2.1.2. Finally, Subsection 2.1.3 turns to Instruction Set Architectures (ISAs).
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2.1.1 A brief history

The first computer widely recognized as Turing-complete (i.e., expressive enough)

was the ENIAC [6], built in 1948. Unlike some other early computing machines, the

ENIAC was purely electronic, having abandoned the (electromechanical) relay in favor

of the faster (electronic) vacuum tube. Early computers were designed and assembled

manually. They were costly and bulky objects, which limited their use to projects

funded by governments or large companies.

The following two decades were marked by significant innovations, such as tran-

sistors replacing vacuum tubes or the development of integrated circuits. These tech-

nologies allowed processors to grow more powerful, compact, affordable, and energy-

efficient, eventually leading to the widespread adoption of the computer. These break-

throughs culminated in the advent of the microprocessor, with the Intel 4004 being

released in 1971: over twenty-odd years, processors had gone from behemoths taking

up whole rooms to something that could be held on a finger.

The rise of the microprocessor also signified the end of the human-sized era of

computer electronics, with transistors reaching a size of 10µm. At this point, processors

could no longer be built by hand and started relying on a photolithographic process.

The photolithographic masks for early microprocessors, such as the Intel 4004, were

still produced manually; however, this soon became impractical. The placement and

routing of components and circuitry were delegated to increasingly automatic tools.

It was only during the 1980s that Electronics Design Automation (EDA) became

pervasive: hardware could now be designed and simulated entirely digitally before

being sent to production. Combined with the growing affordability of computers, this

ushered in an era of accessible hardware design.

During these times, HDLs became dominant, with Verilog being released in 1984 [7].

Through these languages, the functionality of hardware could be described indepen-

dently of implementation concerns such as placement and routing. At first, these

languages were exclusively used for modeling and simulation. After a few years, they

started being used as “silicon compilers” able to turn (relatively) high-level descriptions

of circuits into netlists that could be used to generate the actual hardware.

Not only did the 1980s see the rise of EDA and HDLs, but it was also during

this decade that Field-Programmable Gate Arrays (FPGAs), reconfigurable hardware

allowing for efficient emulation of arbitrary circuits, made their apparition. As FPGAs

could be configured using the same HDL-based descriptions as the actual designs to be
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Figure 2.1: A simplified hardware design pipeline

put into production, the testing and debugging phase of hardware development could

now proceed at a fraction of the previous cost, further contributing to its accessibility.

Although the overall process of hardware production has since been refined, the

fundamentals of hardware design are mostly unchanged, and many industrial tools

in use today date back to the 1980s. Most historical synthesis tools are proprietary,

although some open-source toolchains such as SIS [8] and the related VIS [9] appeared

as early as the 1990s. Modern takes on open-source synthesis toolchains such as

Yosys [10] make it possible to produce a Verilog processor and get it onto an FPGA

using only open-source technology.

2.1.2 Hardware Description Languages

As its name implies, an HDL is a language made to describe electronic circuits. HDLs

are an integral part of modern hardware development, as they describe a circuit’s

behavior in isolation from low-level concerns such as placement and routing. They

also help make hardware design modular: components can be easily packaged for

reuse in other designs.

There are several types of hardware descriptions, the main ones being structural,

behavioral, and dataflow-based. Structural descriptions are formulated in terms of

basic building blocks such as gates and wires. They are often represented as Register

Transfer Level (RTL) descriptions, where systems are depicted as a collection of reg-

isters and rules that govern how these registers are updated. In contrast, behavioral

descriptions focus on the system’s functionality, leaving the task of generating the com-

ponents to the compiler. Dataflow-level descriptions, on the other hand, emphasize

the flow of data between components, detailing how data moves through the system

and how operations are performed on that data. Many languages incorporate multiple

paradigms, allowing designers to choose the most suitable approach for their needs.
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As illustrated in Figure 2.1, modern hardware development usually starts from an

RTL description. This description can be used directly for simulation or synthesis

(leading to FPGA-based testing or actual production). To synthesize a design, we

acquire a netlist, a description of all components to be implemented. At this stage,

the netlist is a graph devoid of information regarding physical layout. Only in the

next phase are the target’s specificities considered. For instance, different FPGAs

may require different layouts. A physical layout is proposed by the place and route

procedure, resulting in a post-route netlist that can be synthesized directly.

In the rest of this subsection, we provide an overview of HDLs at large, going from

the classical, historical HDLs that dominate the industry to relative newcomers with

new ideas regarding how hardware could be constructed.

Classical HDLs Verilog [11] and VHDL [12] are two classical HDLs that originated in

the 1980s and continue to play a significant role in the industry today. VHDL is more

closely related to the Ada programming language, as it was initially developed as a

documentation language for the U.S. Department of Defense, while Verilog has more

in common with C. For example, VHDL is strongly typed, whereas Verilog is weakly

typed. Despite these differences, both languages adopt similar approaches: they allow

designers to describe electronic systems at various levels of abstraction.

In 2009, Verilog’s standard was merged with that of SystemVerilog [13], which

started as an extension of this language, bringing facilities for verification (such as

assertions or clocking domains) as well as features for higher-level description (such as

C types, unions or casting) to the language.

High Level Synthesis High-Level Synthesis (HLS) is a design process where high-level

programming languages such as C or C++ are used to generate hardware designs in

languages like (System)Verilog or VHDL. The high level of abstraction of this process

improves its expressiveness to the benefit of productivity. Furthermore, if the compiler

is trusted, the verification can proceed directly on the software description of hardware.

SystemC [14] is arguably the most popular framework for HLS. It is not a language

per se but a collection of C++ classes; compilers can generate HDL code from SystemC.

Direct generation of hardware from C/C++ code is also possible through tools such as

LegUp [15]. This approach has some traction in the industry, as illustrated by the fact

that both Intel [16] and AMD [17] offer tools for HLS.
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Modern HDLs Modern alternatives to these classical languages have been developed

but have yet to achieve the same level of presence in the industry. The hardware in-

dustry has significant inertia due to several factors, including the extensive investment

in existing tools and workflows and the amount of legacy code relying on established

languages. Most modern languages use (System)Verilog or VHDL as a backend, guar-

anteeing a base level of compatibility with the established tooling.

Recently, LLVM Circt [18] was introduced as an open-source compiler leveraging

the LLVM methodology for circuit compilation. This experimental tool provides a

framework that accommodates various circuit representations and transformations.

LLVM Circt can reduce the implementation cost of new HDLs.

Some modern HDLs are advertised as Hardware Construction Languages (HCLs)

due to their emphasis on high-level, programmatic descriptions. For instance, Chisel [19]

is an HCL embedded within the Scala programming language. It leverages the func-

tional programming capabilities of Scala to make hardware design more expressive.

The related SpinalHDL [20] iterates on Chisel, attempting to fix perceived flaws within

this language. Other comparable HDLs include the Haskell-based Clash [21], [22] and

Lava [23], the OCaml-based Hardcaml [24], and the Python-based MyHDL [25] and

Magma [26].

Rule-based HDLs Rule-based HDLs are a class of languages centered on rules, a set

of building blocks expressed sequentially but executed concurrently. Each rule may

or may not run on each given cycle. The compiler synthesizes the scheduler that

picks which rules run on each cycle in such a way as to maximize work done while

avoiding incompatible actions. Bluespec [27] is the primary representative of this class

of languages.

A more in-depth description of this class of languages is deferred to a later sec-

tion, where we go through an in-depth presentation of a formal HDL of this kind

(Section 2.5.1).

2.1.3 Instruction Set Architectures

Compilation is the process through which a program written in a programming lan-

guage is translated to machine language, the underlying language of a given processor.

Compiling programs can be long and tedious. Therefore, software is usually shipped
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in binary form. A program compiled for a specific processor will not run on all proces-

sors, as distinct models may not include the same instructions or encode them in the

same way, they may have different sets of registers altogether, etc.

Building a binary for each different processor model would be impractical, and

interoperability of different machines would be hampered. Practicality concerns led

to vendors coalescing around a limited set of processor interfaces. Although these

interfaces characterize the functional behavior of machine code, they leave total flex-

ibility regarding the actual implementation. A processor could implement such an

interface independently of being sequential or pipelined, scalar or superscalar, in-order

or out-of-order, supporting speculative execution or not, having different sizes of cache,

etc.

Processor interfaces are called ISAs. In contrast, concrete implementations are called

microarchitectures.

Rather than examining one of the currently commercially successful ISAs, such as

x86 [28] or Arm [29], we focus on the RISC-V ISA [30], a relative newcomer with a

negligible market share but a promising future. The most important thing about RISC-

V is not its architecture but the fact that it is an open-standard ISA. Unlike x86 and

Arm, anyone can implement RISC-V without paying for a license. This openness alone

is a great boon for amateurs and commercial implementers alike.

As its name implies, RISC-V is an ISA of the RISC tradition (Reduced Instruction Set

Computer). As such, it is based on a minimal core. The simplicity of this core could be a

liability. Although this makes the architecture well-suited to simple embedded systems,

the lack of specialized instructions is significantly limiting in most other situations —

some minor added complexity in the ISA may result in clear benefits on the side of

performance. To keep the best of both worlds, RISC-V has a notion of extensions.

The base standard includes only the strict minimum of features. Extensions can be

implemented to extend the feature set. For instance, there are extensions for adding

vector instructions or atomic instructions. There is also a privileged version of the

RISC-V ISA [31], adding features such as different levels of privilege, interrupts, and

hardware threads. These facilities are required to build actual operating systems.

The notion of extensions is not a specificity of the RISC-V ISA. For instance, both

x86 and Arm include extensions for vector operations. Such extensions incur a risk of

fragmenting the ISA. This risk is mitigated in several ways. First, extensions are not

freely picked and chosen. There are some packages of extensions that certain classes
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of processors are expected to include. For instance, x86 extensions are consistently

implemented by all processors produced after their introduction (although extensions

sometimes get deprecated). Similarly, desktop-class processors are expected to imple-

ment a family of RISC-V extensions. Programs can also check whether an instruction

is supported before using it and include appropriate fallbacks.

RISC-V’s characteristics make it a perfect candidate for research purposes. Starting

a RISC-V-based project is relatively easy, legally and practically speaking: tens of open

RISC-V processor designs can be found online, and the simplicity of the base version of

the standard makes it easy to work with as well as a good fit for education and students

onboarding. Doing the same for x86 would be a different story. Overall, RISC-V is in a

uniquely favorable position for future success.

2.2 Cybersecurity

This section introduces some cybersecurity notions that will feature throughout this

document. Cybersecurity focuses on upholding critical properties of computer systems:

• Confidentiality: access to sensitive data must be restricted;

• Integrity: data must not be subject to undesired modifications;

• Availability: the system should remain operational.

Cyberattacks exploit hardware, software, or even social vulnerabilities for violating

the properties listed above. There exist two broad family of approaches to cybersecurity:

• Preventive approaches are concerned with the construction of defect-free sys-

tems;

• Reactive approaches are concerned with the construction of fail-safe systems or

the detection of abnormal situations.

In this thesis, we focus on the former approach. We formally verify that properties

hold for designs before synthesizing them. Indeed, prevention is preferable whenever

feasible. One of our key objectives is to explore ways of guaranteeing that hardware

is safe from broad classes of vulnerabilities: removing vulnerabilities means depriv-

ing attackers of precious tools. Formal methods help us guarantee that systems are

genuinely defect-free.
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Section outline
We start with Subsection 2.2.1, a brief overview of the history of cybersecurity,

before considering a concrete vulnerability (buffer overflows) and an adapted

countermeasure (shadow stacks) in Subsection 2.2.2. Subsection 2.2.3 then turns

to the notion of TCBs. Finally, Subsection 2.2.4 presents the Common Criteria for

Information Technology Security Evaluation (CC), an international standard for

computer security certification.

2.2.1 A brief history

Computer security is a relatively recent domain, which only took off with the intro-

duction of the Internet. Prior to that, computers were both less numerous and more

isolated. Therefore, they were less interesting and less reachable targets, although they

were pretty unprotected: systems lacked primary security mechanisms. In a world

without much in the way of security incentives, vulnerabilities abounded.

The first large-scale cybersecurity incident was the Morris worm, developed and

released in the wild in 1988 [32]. It is estimated that about 6’000 out of the approximately

60’000 computers connected to the Internet were impacted, resulting in a temporary

network partition. In reaction to this event, the first of many Computer Emergency

Response Teams (CERT) was founded. The earliest commercial antivirus software was

released just one year before this event, fueled by the rise of viruses (usually transmitted

by floppy disks). The inadequate state of cybersecurity ensured a period of healthy

growth in this market.

Cybersecurity matured during the 1990s and early 2000s, but so did cybercrimi-

nality. Organized actors, sometimes state-funded, sought to exploit vulnerabilities for

monetary or political reasons. Throughout the 2010s, a string of high-profile attacks

raised public awareness of the stakes of cybersecurity, such as WannaCry (2017), a

ransomware that hit the industry and hospitals alike, or the Equifax data breach (2017),

wherein the private data of close to 150 million persons were compromised. In parallel

to this, the discovery of the Spectre [33] (CVE–2017–5753 and CVE–2017–5715) and

Meltdown [34] (CVE–2017–5754) vulnerabilities, published in 2018, showed that most

hardware released in the prior decades was flawed.

Not everything in cybersecurity has to do with malicious intents: just a few months

ago, in July 2024, a faulty update was pushed by the Crowdstrike cybersecurity com-
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pany. The impacted devices were left unable to boot, impacting industries worldwide

for an estimated loss of billions of euros. This feat goes beyond what most successful

attacks achieve.

After decades of relentless growth, computing has become a keystone of our soci-

eties. Alas, this foundation is not as solid and stable as we may wish. In this context,

the role of cybersecurity is indeed a central one.

2.2.2 Buffer overflows and shadow stacks

Memory corruption is still one of the most significant vulnerabilities in software devel-

oped in low-level languages like C or C++. Indeed, developers using such languages

are in charge of the application memory management, which can lead to spatial and

temporal memory safety errors. Attackers can exploit such vulnerabilities to leak con-

fidential data or modify the application’s intended behavior.

Subsection outline
In Subsection 2.2.2.a, we introduce buffer overflows, one of the most commonly ex-

ploited vulnerabilities for memory corruption attacks. Then, in Subsection 2.2.2.b,

we turn to shadow stacks, a hardware-based countermeasure targeting this vul-

nerability.

2.2.2.a Buffer overflows

A buffer overflow is a vulnerability that allows writes to reach past the end of a buffer,

overwriting the subsequent memory locations in the process. When the buffer is on

the stack, this opens the door to the modification of return addresses of procedures;

the new address may point to arbitrary code, which gets executed.

Figure 2.2 shows a C program exhibiting a trivial buffer overflow. Buffer buf in

function f is 16-byte long, and the strcpy function performs no bounds checking

before copying the buffer attack_buf, which is 24-byte long. If attackers are aware of

the program’s memory layout, they can carefully craft a specific input that leads to an

overwrite of the vulnerable function’s return address.

In 2023, this vulnerability made the top of MITRE’s most dangerous software weak-

nesses list [35].
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void bad(){%
puts("Bad!\n");

}

int f(char* s){%
char buf[16];
strcpy(buf,s);

}

int main(int argc, char* argv[]){%
int attack_buf[6];
attack_buf[5] = (intptr_t)&bad;
f((char*)attack_buf);

}

Figure 2.2: A program vulnerable to buffer overflows
This program overwrites its return address
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Figure 2.3: Working principle of shadow stacks
A shadow stack implicitly stores a copy of the return address on every function call and keeps it until the function returns. There is no other way to
manipulate it. Whenever a function returns, the return address in the classical stack can be compared to the one in the shadow stack. If they differ,
then the classical return address has been modified.

2.2.2.b Shadow stacks

There are both compiler and hardware-based countermeasures for buffer overflow vul-

nerability. For instance, arbitrary values called canaries may be inserted by compilers

before return addresses in the stack. Considering the location of the canaries, naive

attempt to overwrite return addresses would also affect them (although this approach

is not foolproof [36]). The compiler inserts code to check whether return addresses

have been modified.

Hardware-based solutions offer some advantages over purely compiler-based ones.

In particular, they usually incur lower delays, if any, due to the parallel nature of

hardware. An example of such a hardware-based security mechanism is Control-
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Flow Enforcement Technology [37] (CET), a solution introduced by Intel for its 11th

generation of processors.

The shadow stack is a critical component of the CET. Its working principle is illus-

trated in Figure 2.3. Buffer overflow resilience is achieved by storing return addresses

redundantly in a space that cannot be written to through normal means. In Intel’s

CET, the only way through which pages marked as shadow stack pages can be altered

is when an instruction corresponding to a function call or return is detected. In this

situation, the stack is implicitly pushed to or popped from. Otherwise, the write fails:

there is no way of modifying these pages explicitly.

When a function return is detected, the shadow and standard stacks are compared.

If they disagree on the return address of a procedure, then the standard stack is com-

promised, and an exception gets raised — it is left to the system to handle. Return

addresses are always checked before jumping to them.

2.2.3 Trusted Computing Bases

The notion of TCBs is used in cybersecurity to outline limitations to security guarantees

in a system. The TCB of a system encompasses all hardware and software components

whose correction is critical to its security. For instance, if a piece of software assumes

that a specific external function is implemented correctly, then this function becomes

part of the software’s TCB. Bugs or vulnerabilities in a TCB can break everything that

relies on it.

Another view of TCBs is that they are a set of logical hypotheses on which the proof

of the security of a system relies. The simpler the TCB, the better the security: reduced

hypotheses can be falsified in fewer ways.

2.2.4 Common Criteria and Evaluation Assurance Levels

CC [1] refers to an international standard for computer security certification. This stan-

dard introduces a way of describing security properties alongside criteria for evaluating

adherence to these properties. As evaluation can be a lengthy and costly process, and

different systems do not warrant the same level of guarantees, the standard describes

seven Evaluation Assurance Levels (EALs). EALs indicate the rigor of the evaluation

applied to a system. Each level increases the stringency of the process, with EAL7, the

highest level requiring proof assistant-based formal proofs of claimed properties. In
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practice, this level is rarely reached: proof assistants are complex tools and verifying

commodity systems within them remains challenging. One of the objectives of this

thesis is to make the construction of hardware that meets the most stringent common

criteria requirements more accessible.

2.3 Formal methods and proof assistants

In this section, we introduce the notions related to formal methods that are critical

to the understanding of this thesis. Formal methods are about the obtention of high-

assurance proofs. They encompass a family of tools that involve mechanized logic —

SAT-solvers, proof assistants, and everything in between. Formal methods usually are

a means more than they are an end, and this is especially true in this thesis: we want

high-assurance guarantees about hardware security, and we obtain these guarantees

through formal methods.

A proof is a purported sufficient argument for the truth of a proposition. All proofs

promote belief in propositions, but not all are created equal: some favor terseness, and

others take a more long-winded approach, usually to the benefit of understandability.

Importantly, proofs may be incorrect.

Most proofs are first developed informally. The overall structure of the argument

is given, but details perceived as simple enough are left to the recipient’s imagination

— pedantry and readability do not go hand in hand; details do not matter so long as

they can be reconstructed on the fly. The issue is that the handwaviness of informal

arguments leaves room for errors to sneak into demonstrations.

On the other hand, formal proofs (the ones formal methods are concerned with)

are spelled out in such a way as to preclude ambiguity. Although formal proofs may

still be wrong, it is possible to verify the correctness of a proof purely mechanically.

Instead of trusting the whole edifice of mathematics, one only has to trust some simple

verification procedures.

Section outline
As is customary by this point, we start with a brief overview of the history of formal

methods in Subsection 2.3.1. We then discuss the Coq proof assistant in detail in

Subsection 2.3.2. This tool plays a central role in this thesis. In Subsection 2.3.3,

we present SAT-solvers, efficient tools to automate reasoning about some simple
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fragments of logic. We finish with Subsection 2.3.4, a short introduction to the

notation we use for logical inference throughout this thesis.

2.3.1 A brief history

Formal methods are about the development and the mechanical verification of formal

proofs. Formal proofs are not the standard in mathematics; indeed, the historical

development of mathematics was mostly anarchic. That is not to say that early works

were entirely devoid of rigor — for instance, Euclid’s Elements [38], compiled around

300 BC, follows an axiomatic structure, where (most of) the required fundamental

assumptions are laid out clearly and separately from the argumentation proper.

Modern logic can be dated back to the nineteenth century. At the time, concerns

about mathematics’ lack of proper foundations led to a search for a system of axioms

that could finally ground this structure. Such a hypothetical system comes with a list

of desiderata: it should be expressive enough to encode all of mathematics while being

both syntactically complete (meaning that for each proposition, either it or its negation

should be provable) and consistent (meaning that at most one out of a proposition

and its negation should be provable). The result would be decidable: we could devise

a procedure which, given a proposition, returns either a proof of it or a proof of its

negation. And, just like that, mathematics would become a solved problem (barring the

fact that the existence of such a procedure would not say anything of its practicality).

Some naive mistakes thwarted the first attempts at building such systems. In 1902,

Bertrand Russell was the first to publish proof of the inconsistency of the historical

version of set-based axiomatic systems, a result now known as Russell’s paradox [39],

[40]. However, his own efforts alongside Alfred Whitehead in formalizing mathematics

as Principia Mathematica [41] also fell short of their complete goal. In fact, after a few

decades of research and many attempts, there was still no solution in sight.

In his seminal 1931 paper [42], Kurt Gödel crushed many hopes. He showed that

past a degree of complexity, a system of axioms must necessarily remain incomplete

to avoid inconsistency. Nevertheless, the related problem of taking a formal proof and

verifying its correctness is decidable.

As troubling as Gödel’s theorem and its successors may be on the surface, they

rarely pose a problem in practice. These theorems do not reveal mathematical logic to

be vacuous, only that a commonly held belief about its shape was wrong. The existence
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of undecidable propositions rules out end-all procedures for logic, but undecidable

propositions are absent from most workloads where formal logic can be applied anyway.

End-almost-all procedures do exist: there are procedures for deciding all decidable

statements. They are too inefficient for practical purposes, but that is another question.

Besides, there are many fragments of logic for which efficient solvers can be found.

The prominence of questions of logic in the early twentieth century impacted the

development of early computers. The fact that logicians, concerned with questions

related to the nature and reach of computability, were involved is not surprising: com-

puters are the concrete manifestations of the hitherto abstract notion of computation.

For instance, a certain Alan Turing described the mathematical model of computation

known as the Turing machine in 1936 [43]. Less than ten years later, he became di-

rectly involved in early computer design. Similarly, his PhD advisor, Alonzo Church,

developed lambda calculus, another computation model based on functions [44]. This

formalism was later credited as an influence of the Lisp programming language and

functional languages.

Formal methods were not developed immediately in the wake of the development of

early computers. Automath [45], the first proof assistant (a tool used both for certifying

the validity of proofs and for helping users build these proofs in the first place), was

started by Nicolaas Govert de Bruĳn in the 1960s. Around the same time, DPLL [46],

an efficient procedure for the boolean satisfiability problem (the problem of finding

whether a valuation for boolean variables that satisfies a given boolean formula exists,

also known as the SAT problem), was devised. Similar tools are used to this day. In

fact, throughout the following two subsections, we will get acquainted with a modern

proof assistant and SMT-solvers, an extension of SAT-solvers.

2.3.2 The Coq proof assistant

Coq [47] used to be the name of the Rocq theorem prover. At the time of this writing,

the renaming has yet to go through — by the time of your reading, it likely has. We

refer to this proof assistant using its historical name because it is still the only official

one here in the past. Also, some names used for tools introduced in this thesis are puns

with critical dependencies on this old name.

Coq, then, “is a formal proof management system[, which] provides a formal lan-

guage to write mathematical definitions, executable algorithms, and theorems together
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with an environment for semi-interactive development of machine-checked proofs”
1
.

With a tool such as Coq, users can define (or import) domain-specific knowledge

relevant to their research and start proving properties involving those concepts. The

proofs thus produced can be verified by what is called Coq’s kernel, a conceptually

simple proof checker. The proofs are unassailable, assuming that the domain-specific

knowledge is soundly encoded in the proof assistant and that the Coq’s kernel is sound.

The checker provides solid guarantees — mechanically verifying proofs this way is the

gold standard of high-assurance demonstration.

Coq is a formal tool. Although formal proofs are fully explicit, this does not mean

that all the details always need to be written in full: what matters is that the kernel can

reconstruct them. Therefore, although formal, Coq proofs can be written in a human-

readable way (classical, informal proofs are better at this, however). Furthermore, Coq

has good support for automation, which helps with writing terser proofs. Users can

define custom tactics to automate away the tedium.

Coq’s syntax is flexible, letting users introduce custom syntactical constructs for

their needs. This feature is handy for embedding Domain Specific Languages (DSLs)

such as HDLs. That way, circuits can be written in Coq mostly transparently, they can

be simulated within the system, and we can prove properties both about the language

itself and concrete circuits.

While Coq is a versatile tool, it does have its drawbacks. One of the most common

issues is performance [48]. Reasoning about constructs that require significant memory

can be challenging, and there are numerous subtle factors that can negatively impact

performance. Additionally, when considered as a programming language, Coq falls

short in providing essential debugging tools.

2.3.3 SMT-solvers

An SMT-solver is an extension of an SAT-solver, a tool that checks whether a formula

over boolean variables is satisfiable. When the formula is satisfiable, the solver usually

outputs a concrete valuation, which makes the formula true. Although the problem

of SAT solving is NP-complete, SAT-solvers are very efficient in practice, in addition

to being a widely applicable tool. Indeed, although most problems are not naturally

expressed in the form expected by SAT-solvers, a large part can be translated into such

1
https://coq.inria.fr/
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ModusPonens
𝐴⇒ 𝐵 𝐴

𝐵

Figure 2.4: Inference rule for modus ponens

a form.

SMT-solvers add so-called theories to SAT-solvers. These theories are handy for

handling problems that do not lend themselves well to representation as formulas over

boolean variables. For instance, most SMT-solvers include a theory for reasoning about

linear arithmetic. Through it, statements such ((𝑎 > 8) ∧ (𝑎 < 6)) can be trivially shown

to be unsatisfiable.

Whereas proof assistants are interactive tools, SMT-solvers are automatic tools. It

almost looks like they sit at two opposite ends of a spectrum, with proof assistants

being very expressive but complex and SMT-solvers limited to some simpler fragment

of logic but very easy to use. However, some SMT-solvers said to be proof-producing

justify their answer. Such proofs can then be imported into proof assistants. That way,

we can have the best of both worlds: we can manually carry out high-level reasoning

tasks into proof assistants and delegate the rote parts to automatic procedures.

2.3.4 Notations for logic

This section introduces notations for logical inference that are used in the rest of this

document. Inference rules describe which deductions follow from given states of

information. The presentation of inference rules follows the format introduced in

Figure 2.4. There, we present the modus ponens rule, which states that ((𝐴⇒ 𝐵) ∧ 𝐴) ⇒
𝐵 (or, in plain English, “for any 𝐴 and 𝐵, when we know that 𝐴 implies 𝐵 and that

𝐴 holds, then 𝐵 must hold as well”). Premises are written above the line, and the

conclusion stands below it.

We present the semantics of computer languages operationally; in other words, we

focus on how programs are evaluated. Our definitions rely on transition relations. We

give several inference rules which can be applied to generate transitions. Operational

semantics can be split into two categories: big-step semantics and small-step semantics.
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Sequence
(i1, 𝜎) ⇓ (𝜎′) (i2, 𝜎

′) ⇓ (𝜎′′)
(i1; i2, 𝜎) ⇓ 𝜎′′

Figure 2.5: Inference rule for a sequence of instructions (big-step version)

SequenceStep
(i1, 𝜎) ↓ (i′1, 𝜎′)

(i1; i2, 𝜎) ↓ (i′1; i2, 𝜎
′)

SequenceSkip

(skip; i2, 𝜎) ↓ (i2, 𝜎)

Figure 2.6: Inference rule for a sequence of instructions (small-step version)

Big-step semantics In big-step semantics, transitions relate instructions to values (i, 𝜎) ⇓
𝜎′ (“the interpretation of instruction i in the environment 𝜎 results in the environment

𝜎′”). In Figure 2.5, we present the big-step version of the rule used for evaluating

sequences of instructions. In plain English, it can be read as “if the evaluation of

i1 in an environment 𝜎 results in an environment 𝜎′
, and if the evaluation of i2 in

this environment 𝜎′ results in an environment 𝜎′′, then the evaluation of i1; i2 in an

environment 𝜎 results in an environment 𝜎′′”.

Small-step semantics On the other hand, in small-step semantics, transition rules return

new transition states (i1, 𝜎) ↓ (i2, 𝜎′) (”the interpretation of instruction i1 in environ-

ment 𝜎 is the same as the interpretation of instruction i2 in environment 𝜎′“). Steps

progressively simplify the instruction until it becomes skip, a special construct used

to indicate that nothing is left to evaluate. At this stage, the value of the environment

is the result. In Figure 2.6, we present the small-step version of the sequence rule.

Here, it comes with two rules. The first one, SequenceStep, simplifies the left branch

of the sequence. It gets applied repeatedly until this branch is fully simplified (i.e.,

its instruction becomes skip). At this point, the SequenceSkip rule can be applied to

eliminate the first branch.

Small-step semantics have some advantages over big-step semantics. In particu-

lar, they can handle non-termination and are a more natural suit for modeling non-

deterministic scenarios. In this thesis, only small-steps semantics are used.
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2.4 Formal verification and hardware design

In this shorter section, we give a high-level overview of the problem of hardware

verification — the whole detail is given in the state of the art, which can be found in

Section 3.1

Formal verification is an established practice in hardware design [49], where it takes

various forms. For instance, model checking [50] is a method whereby properties of

hardware are verified on a finite state machine-based representation of the system. An-

other common method is equivalence checking [51] where the functional equivalence

of two distinct designs is checked. Typical implementations rely heavily on automated

procedures (this is often used to check that optimizations preserve the semantics of a

design; it is usually possible to show what the differences are when they exist). Both

techniques are well-suited to the needs of commercial hardware designers: they are

efficient and relatively approachable. Other common formal techniques include ab-

straction refinement [52] and temporal logic-based tools (linear temporal logic [53],

computation tree logic or Property Specification Language [54]). Various implemen-

tations of all these techniques are proposed in industry-grade tools, as discussed in

greater detail in Section 3.1.

Despite their versatility, these approaches come with limitations. The main one

is their sensitivity to the state explosion problem [3]: the number of states often in-

creases exponentially with the complexity of the design. As outlined by Clarke et

al. [52], abstraction is an important technique for working around this problem. Tools

made for a certain category of usecases are typically limited in their abstraction ability.

Furthermore, industrial tools have an impact on the TCB (a notion we introduced in

Subsection 2.2.3) that scales with their complexity.

In contrast, proof assistants can give high-trust proofs about approximately every-

thing. The versatility of proof assistants comes at a cost, mainly paid in accessibility.

Overall, the practice of proof assistant-based hardware verification is still at an early

stage of development. Given the current state of tooling, the properties usually checked

by chip designers are much easier to verify with established systems than with these

tools.

The TCB can be easily surveyed in proof assistant-based developments. Indeed,

hypotheses must be introduced explicitly before they can be used by such a tool. In a

sense, it becomes part of the TCB. One of the fundamental goals of proof assistants is to
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reduce the trusted base of reasoning in a more general sense: a simple proof-checking

procedure must be trusted, but the correctness of checked proofs then comes for free.

Improvements to the tooling could make proof assistants a realistic alternative

to classical checkers. Right now, the barrier of entry is high enough to skew the

cost-benefit balance the wrong way. Improving usability means pushing this balance

towards something more acceptable for manufacturers. As a concrete example, there

is little in the way of integrating tactics for, e.g., verified equivalence checking from

within proof assistants, with about the same performance as the tools more commonly

used today. The initial implementation cost of verified procedures is high, but that of

their subsequent uses is negligible.

The first challenge is that the industry is dominated by only a few HDLs, none built

with formal methods in mind. Several projects aim to retrofit formal semantics onto

classical languages, and research HDLs built with formal semantics from the ground

up also exist. In the upcoming section, we discuss an example of such an HDL.

2.5 The Kôika language

Kôika [55] is an open-source formal HDL. Being embedded in Coq, this language

provides a firm basis for verifying hardware. It is based on Bluespec [27], a general-

purpose, high-level, non-formal HDL.

The Kôika compiler is formally verified and outputs Verilog code. One can thus

apply Verilog-compatible tools (e.g., simulators and FPGA bitstream generators) to

Kôika designs. The project’s custom simulator “Cuttlesim” [56] allows for efficient

direct simulation of Kôika designs. Indeed, Kôika sits at a level of abstraction that

lends itself better to efficient simulation than RTL: its form is close to that of regular

software, so standard software optimization techniques apply.

Figure 2.7 presents the classical Kôika hardware development pipeline for devel-

oping unverified hardware. Indeed, although the language itself is formalized and

some interesting metaproperties have been proved about it, hardware produced with

Kôika is not necessarily verified. Using a verified compiler brings benefits even when

the object being compiled is not itself verified. Namely, we can safely assume that the

compiler will respect a specification and in particular that it will not be a source of

bugs. In practice, verifying a compiler for a language and verifying a program/circuit

written in that language are two quite distinct tasks. They are related in that they both
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Figure 2.7: The Kôika hardware development pipeline

require a formal semantics of the language in question, but the similarity stops there.

Section outline
This section aims to arm the reader with background knowledge on the fun-

damentals of the Kôika language. We start with a high-level overview of the

language in Subsection 2.5.1 before giving a more detailed description of the lan-

guage’s syntax and semantics in Subsection 2.5.2. Finally, in Subsection 2.5.3, we

turn to its limitations when using it to prove hardware designs.

2.5.1 Rule-based HDLs

Just like Bluespec [27], Kôika is a rule-based language. A Kôika design is expressed as

a set of independent rules, expressed sequentially but run concurrently. The compiler

must generate the actual hardware, maximizing parallelism while avoiding hazards —

most of the control logic is generated automatically by the compiler, with some user

guidance. This way of describing hardware is particularly convenient for concurrent

systems such as pipelined processors, where one rule approximately corresponds to

one stage.

Kôika rules can be viewed as atomic transactions, which either execute fully or not

at all during a cycle. On every cycle, the automatically derived control logic indicates

whether each rule should run. This scheduler is constructed in such a way as to avoid

rule failures: some actions are declared incompatible by the semantics. If running a

rule in a given cycle would lead to a failure, then the rule must be dropped from the
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schedule for that cycle.

A failure is either triggered explicitly or arises from the incompatibility of two

attempted actions. We call this latter situation a conflict. For instance, a conflict occurs

whenever a rule attempts to access the value of a register that is already written to by

a rule scheduled with a higher priority (scheduling priority is defined explicitly by the

user).

In pipelined designs, most of the communication between stages occurs across

cycles. In Kôika, a pipeline stage typically writes its results onto a stack of depth one,

and the stage following it pops the same stack during the next cycle to access this

information. Crucially for pipelining, both pushing to a full stack and popping from

an empty stack result in a failure. Figure 2.8 shows how such failures lead to implicit

stalling in such designs. In this figure, stages are represented by squares ( A ) and stacks

are represented by rectangles ( ).

On a given cycle, each rule either succeeds ( A ) or fails ( A ). The stacks between the

different stages contain information about instructions. They are colored with different

shades of blue. The colors indicate which instructions’ data are stored in which stage ( ,

, etc.), which helps with tracking individual instructions over time. Later instructions

are associated with darker colors. If a stack is empty, it is left uncolored ( ). A full

pipeline may then look something like this: A B C .

Subfigure 2.8a shows how the success of a rule influences its environment: when

a rule succeeds, it takes the data from the stack before it, handles it, and then outputs

relevant data related to the same instruction to the next stack. For this to work, the

previous stack needs to have contents to pop, and the next one needs space to push

into.

Subfigure 2.8b shows that when a rule fails, it does not impact its environment in

any way. In particular, the stack in front of it stays full. Subfigure 2.8c shows how this

behavior leads to failures propagating down the pipeline. Here, there are two rules

with their associated priorities. Note that the rule that comes up later in the pipeline

is the one that has the higher priority. Therefore, it will be considered earlier in the

scheduling process. However, this rule fails and leaves the stack before it in its filled

state. The other rule, not being able to output anything, also fails.

It is typical to schedule rules so that the ones that appear more to the right have

higher priority: the stack following them needs to be emptied before they write to it,
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(a) Successful execution of a rule (b) Rule failure — the stack stays full

2 1 2 1 2 1

(c) One cycle of execution of a longer subset of a pipeline.
Rules are annotated with their scheduling order. Note how the failure propagates backwards: after rule 1 failed, the queue between it and rule 2
remained full. Rule 2 was bound to fail, as its write could not succeed.

i. F D Ex Mem WB

ii. F D Ex Mem WB

iii. F D Ex Mem WB

iv. F D Ex Mem WB

v. F D Ex Mem WB

vi. F D Ex Mem WB

(d) Failure propagating while evaluating cycle n of a pipelined processor
The propagating nature of failures shown in (c) implicitly leads to stalling behavior here (we assume that Ex fails due to a read after write hazard). We
split the evaluation of the cycle into a number of discrete steps (i. to vi.), building a schedule for that cycle. Step vi. is the final state of the pipeline on
cycle n.

F D Ex Mem WB

n + 1

F D Ex Mem WB

n + 2

(e) Results of cycles n + 1 and n + 2

Figure 2.8: Rules failures and implicit control logic
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conceptually speaking.

Subfigure 2.8d shows a complete example of a failure propagating through a classic

RISC pipeline during a cycle. This pipeline is composed of five stages: fetch (F), decode

(D), execute (Ex), memory access (Mem) and Writeback (Mem). Although the last few

stages successfully execute (see ii. and iii.), stage Ex encouters a failure (iv.). This failure

ends up affecting the two stages before it, D (v.) and F (vi.). Kôika’s semantics gives us

this implicit stalling behavior for free.

Finally, possible states for the pipeline after the following cycle and the one after that

are shown in Subfigure 2.8e. On cycle 𝑛 + 1, even when assuming that all other rules

succeed, Mem is bound to fail as the Ex to Mem stack was left empty after cycle 𝑛. Note

that the rest of the data works its way towards the pipeline’s exit. At the end of cycle

𝑛+1, Ex has written to this stack. Therefore, Mem can succeed on cycle 𝑛+2. This time,

however, WB having popped the Mem to WB stack and Mem not having filled it with

new contents, the rule fails. Thus, the bubble also progresses toward the pipeline’s

exit. In real pipelined processors, optimizations such as operand forwarding can help

limit unnecessary stalls by allowing data to move against the flow of the conventional

data path. Kôika handles such optimizations, as we shall soon see.

2.5.2 Syntax and semantics

2.5.2.a Syntax

A Kôika design manipulates a set of stateful elements that form its microarchitectural

state. In Kôika parlance, these stateful elements are called “registers” — not to be

conflated with CPU registers. Although CPU registers can be Kôika registers, other

objects count as Kôika registers, such as the stacks mentioned in Section 2.5.1.

As shown in Figure 2.9, a design is additionally composed of a set of rules alongside

a schedule. Each rule can be seen as an atomic transaction describing a transition in

the microarchitectural state from one clock cycle to the next. The schedule is a list

of such rules. Its role is to constrain the hardware generation. Indeed, although the

hardware circuit will execute the rules concurrently, it is described sequentially. This

linear description gives rise to a simple semantics of reference, a behavior to which the

hardware must conform. The compiler’s role is to generate control logic to enforce the

resulting constraints.

Figure 2.10 provides a sample action illustrating Kôika’s syntax. This action updates
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Actions 𝑎 ::= 𝑣 | 𝑥 | skip
| read 𝑟 | write 𝑟 𝑎
| let 𝑥 = 𝑎 in 𝑎
| 𝑥 := 𝑎
| if 𝑎 then 𝑎 else 𝑎
| 𝑓 (𝑎, . . . , 𝑎) | 𝑎; 𝑎
| abort

Registers 𝑟

Variables 𝑥

Program 𝑃 ::= [Rule name = 𝑎]∗
+ Schedule = −−−→name

Values val ::= ®𝑏 | {(𝑘 : val)∗} | {val∗} | enum_val
Types 𝜏 ::= Bits 𝑛 | Struct [(𝑘, 𝜏)∗]

| Array 𝑛 𝜏 | Enum [variant∗]

Figure 2.9: Syntax of Kôika designs

the state either of register a or of register b depending on the state of register a at the

beginning of the cycle. A variable x is introduced in this example. The difference

between registers and variables is that registers are stateful components. In contrast,

variables are transient values local to a single rule.

let x = (read a) + 1 in
if x == 5
then write a 0
else

x := x + 4;
write b x

Figure 2.10: A Kôika action
This action writes either to register 𝑎 or to register 𝑏
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2.5.2.b Semantics

Γ ⊢ (𝑙 , 𝑎)↓𝜎𝐿(𝑙′, 𝑣, Γ′)
schedule log

action value

rule logs

let-bindings

environments

initial values

of registers

Figure 2.11: Anatomy of a judgment

Before turning to the semantics of full schedules, we must consider the semantics of

the actions from which they are built. Indeed, a Kôika rule is simply a named action.

The successful execution of an action produces a value and updates the log that stores

the sequence of read and write events on registers. Figure 2.11 details the general

form of an action judgment (Γ ⊢ (𝑙 , 𝑎) ↓𝜎
𝐿
(𝑙′, 𝑣, Γ′)). The full semantics is given in

Figure 2.12, by way of a set of such judgments, where Γ is an environment for let-

bound variables, 𝑙 is a “rule log”, i.e. a log of events (read or write accesses on registers)

that occurred so far during the execution of the current rule, 𝑎 is the action to be

executed; and 𝑙′ is an updated rule log, 𝑣 is the value computed by action 𝑎 and Γ′ is

an updated environment. The environment Γ is a mapping taking variable names to

their associated values. Moreover, these judgments use two components that are never

updated in the semantics of actions: an environment 𝜎 that gives the value of each

register at the beginning of the cycle, and a “schedule log” 𝐿 that contains the read and

write events produced by previous rules (as defined by the schedule) during the same

cycle. For the sake of clarity, when there is no ambiguity about which 𝜎 and 𝐿 should

be used, we write ↓ instead of the full ↓𝜎
𝐿
.

The environment (Γ) gets updated in rule Bind. In this rule, we start by adding

a binding to the environment ((𝑥, 𝑣1) :: Γ′). This binding gets removed at the end

when the variable goes out of scope (tl Γ′′, where tl is the function that returns a

list’s tail). Rule Funcall, which describes the semantics of function calls, creates a new

environment for it by using zip, the function that combines two lists into a list of pairs

(i.e., zip [x1; ...; xn] [v1; ...; vn] = [(x1, v1); ...; (xn, vn)]). args 𝑓 and

body 𝑓 give the names of the arguments and the body of a function 𝑓 .

The events in the schedule log and rule log are of the form rd(𝑟) or wr(𝑟, 𝑣), denoting

respectively a read on register 𝑟, and a write of value 𝑣 on register 𝑟. Operator ++ is

the concatenation of lists. The separation between the schedule log and the rule log

is necessary because the effects of rules may be canceled in the presence of conflicts
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Semantics of actions:

Cst
𝑣 ∈ val

Γ ⊢ (𝑙 , 𝑣) ↓ (𝑙 , 𝑣, Γ)

Var
Γ(𝑥) = 𝑣

Γ ⊢ (𝑙 , 𝑥) ↓ (𝑙 , 𝑣, Γ)

Assign
Γ ⊢ (𝑙 , 𝑎) ↓ (𝑙′, 𝑣, Γ′)

Γ ⊢ (𝑙 , 𝑥 := 𝑎) ↓ (𝑙′, 𝑡𝑡 , Γ′[𝑥 ↦→ 𝑣])

Bind
Γ ⊢ (𝑙 , 𝑎1) ↓ (𝑙′, 𝑣1, Γ

′) (𝑥, 𝑣1) :: Γ′ ⊢ (𝑙′, 𝑎2) ↓ (𝑙′′, 𝑣, Γ′′)
Γ ⊢ (𝑙 , let 𝑥 = 𝑎1 in 𝑎2) ↓ (𝑙′′, 𝑣, tlΓ′′)

Cond-True
Γ ⊢ (𝑙 , 𝑎1) ↓ (𝑙′, [true], Γ′) Γ′ ⊢ (𝑙′, 𝑎2) ↓ (𝑙′′, 𝑣, Γ′′)

Γ ⊢ (𝑙 , if 𝑎1 then 𝑎2 else 𝑎3) ↓ (𝑙′′, 𝑣, Γ′′)

Cond-False
Γ ⊢ (𝑙 , 𝑎1) ↓ (𝑙′, [false], Γ′) Γ′ ⊢ (𝑙′, 𝑎3) ↓ (𝑙′′, 𝑣, Γ′′)

Γ ⊢ (𝑙 , if 𝑎1 then 𝑎2 else 𝑎3) ↓ (𝑙′′, 𝑣, Γ′′)

Funcall
Γ0 ⊢ (𝑙0, 𝑎1) ↓ (𝑙1, 𝑣1, Γ1) . . . Γ𝑛−1 ⊢ (𝑙𝑛−1, 𝑎𝑛) ↓ (𝑙𝑛 , 𝑣𝑛 , Γ𝑛)

zip(args 𝑓 , [𝑣1, . . . , 𝑣𝑛]) ⊢ (𝑙𝑛 , body 𝑓 ) ↓ (𝑙′, 𝑣, Γ′)
Γ0 ⊢ (𝑙0, 𝑓 (𝑎1, . . . , 𝑎𝑛) ↓ (𝑙′, 𝑣, Γ𝑛)

Seq
Γ ⊢ (𝑙 , 𝑎1) ↓ (𝑙′, 𝑣1, Γ

′) Γ′ ⊢ (𝑙′, 𝑎2) ↓ (𝑙′′, 𝑣, Γ′′)
Γ ⊢ (𝑙 , 𝑎1 ; 𝑎2) ↓ (𝑙′′, 𝑣, Γ′′)

Read
may_read(𝐿, 𝑟)

Γ ⊢ (𝑙 , read 𝑟) ↓𝜎𝐿 (𝑙++[rd(𝑟)], 𝜎(𝑟), Γ)

Write
Γ ⊢ (𝑙 , 𝑎) ↓ (𝑙′, 𝑣, Γ′) may_write(𝐿, 𝑙′, 𝑟)
Γ ⊢ (𝑙 ,write 𝑟 𝑎) ↓𝜎𝐿 (𝑙′++[wr(𝑟, 𝑣)], 𝑡𝑡 , Γ′)

may_read(𝐿, 𝑟) ≜ wr(𝑟, ∗) ∉ 𝐿
may_write(𝐿, 𝑙, 𝑟) ≜ wr(𝑟, ∗) ∉ (𝐿++𝑙)

Semantics of a schedule:

Γ0 ⊢ (𝑙0, 𝑎) ↓𝜎𝐿 (𝑙 , 𝑣, Γ) (𝐿++𝑙 , sch) ⇓ 𝐿′

(𝐿, 𝑎 :: sch) ⇓ 𝐿′
Γ0 ⊢ (𝑙0, 𝑎) ̸↓ 𝜎

𝐿 (𝐿, sch) ⇓ 𝐿′

(𝐿, 𝑎 :: sch) ⇓ 𝐿′

(𝐿, []) ⇓ 𝐿

Figure 2.12: Semantics of Kôika actions and schedules
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between register reads and register writes. More precisely, a conflict happens in two

situations: read-after-write (see rule Read in Figure 2.12), i.e. when a read on a register

happens after a write on the same register by a previous rule (this information is found

in the schedule log); or write-after-write (see rule Write in Figure 2.12), i.e. when a write

happens after another write on the same register by a previous rule (schedule log) or by

the same rule (rule log). The conditions under which reads and writes are permitted

are decided by the may_read and may_write functions. Note that reading a register

after a write has occurred within the same rule is allowed, and the value thus obtained

is the value of the register at the beginning of the cycle.

The read-after-write conflict exists in order to respect the One-Rule-At-A-Time com-

piler property (ORAAT), i.e., the parallel execution of several rules is only allowed

if it cannot be distinguished from a sequential execution of these rules, in the order

described by the user-provided schedule. This property characterizes the constraints

put on the compiler for hardware generation. With it, we can show that any property

of designs proven by considering the rules in the scheduling order also holds for the

actual, parallel design output by the compiler.

For an example of the impact of conflicts such as read-after-writes on scheduling,

consider the rules A: write r 0 and B: read r, and assume register r initially holds

the value 1. With the schedule [𝐴; 𝐵], rules 𝐴 and 𝐵 cannot run concurrently as this

would lead to a read-after-write conflict on register r. On the other hand, with the

schedule [𝐵;𝐴], the two rules may execute concurrently and result in the register r

having value 0.

On the other hand, the write-after-write conflict is not necessary to satisfy ORAAT.

Rather, it is a design choice of the authors of Kôika, who consider that overwriting

registers by shadowing them is an antipattern. For instance, the rule C: write r0 1;

write r1 2; write r0 3 would write twice to register r0.

At the bottom of Figure 2.12, we introduce three rules that describe the semantics of

a schedule, built on top of the semantics of actions. We run each rule with an initially

empty environment Γ0 and an empty rule log 𝑙0. We write Γ ⊢ (𝑙 , 𝑎) ̸↓ to denote that

the execution of action 𝑎 fails, i.e. does not result in a triple (𝑙′, 𝑣, Γ′), e.g. because of a

conflict. Conflicts result in the cancellation of all the effects of the conflicting rule. In

the example of rule C, this means not only that none of the writes to r0 happen, but

also that the write to r1 is also ignored. The cause of this behavior is that rules are

considered atomic, i.e., they execute entirely or not at all.
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Rule A:
if (read a == 0) then write r 0;
if (read b == 0) then write r 1.

Figure 2.13: An action with a potential write-after-write conflict

These conflicts must be detected at run-time because the conflicting register reads

or writes may be nested inside conditional expressions and thus cannot be decided

during compilation. For instance, in Figure 2.13, rule A is bound to fail only when both

a and b are 0 (as there is a double write on r).

Kôika’s compiler introduces the appropriate control logic in the generated circuit

to run rules in parallel, and only commit each rule’s effects when there are no conflicts.

This behavior and the notion of scheduling simplify the definition of pipelined systems:

conflicts help determine how to pipeline a design without the user needing to give all

the details explicitly.

The rules that run in a given cycle depend on the registers’ initial value. These values

are stored in 𝜎, the association map that stores the register values at the beginning of

the cycle. The constant changes in the environment throughout the execution of a

design give rise to a dynamic system. As shown in Figure 2.8, rule cancellations can

lead to stalling behavior arising on its own in the context of pipelined systems such as

processors.

Finally, the semantics of a cycle is given by a function interp_cycle, taking as

parameters a schedule sch and an initial state for registers 𝜎, and producing as a result a

new state for registers. For instance, interp_cycle(sch, 𝜎)(𝑟) is the value of register 𝑟 at

the end of a cycle. This function implements the semantics of Kôika schedules presented

in Figure 2.12 (this is possible because the semantics is both total and deterministic).

2.5.2.c Ports

In the language we have described thus far, passing information between two different

rules during a single cycle is impossible, effectively precluding classical optimizations

such as operand forwarding.

Kôika lifts this restriction through the port mechanism. Two ports, 0 and 1, are

added to each register. They correspond loosely to versions of the associated register

across time (see Figure 2.14). Reads and writes are associated with a specific port. One
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Ports 𝑝 ::= 0 | 1
Actions 𝑎 ::= . . .

| read𝑝 𝑟 | write𝑝 𝑟 𝑎

may_read(𝐿, 𝑟, P0) ≜ wr(𝑟, ∗, ∗) ∉ 𝐿
may_read(𝐿, 𝑟, P1) ≜ wr(𝑟, P1, ∗) ∉ 𝐿
may_write(𝐿, 𝑙, 𝑟 , P0) ≜ wr(𝑟, ∗, ∗) ∉ (𝐿++𝑙)

∧ rd(𝑟, P1) ∉ (𝐿++𝑙)
may_write(𝐿, 𝑙, 𝑟 , P1) ≜ wr(𝑟, P1, ∗) ∉ (𝐿++𝑙)

Figure 2.14: Syntax and semantics of Kôika designs with added ports

can only read the value of a register on port 0 if no write has occurred on that register

in the current cycle, but we can read on port 1 if no write has occurred on port 1. If a

write has occurred on port 0, a read on port 1 will retrieve the value that was written,

whether the read and write occur in the same rule or later.

The conflicts between reads and writes are now more subtle: reads on some port 𝑝

are only allowed if no write has already occurred in a rule before the current one on

any port 𝑝′ ≥ 𝑝. Writes on some port 𝑝 are allowed neither after writes on ports 𝑝′ ≥ 𝑝

nor after reads on ports 𝑝′ > 𝑝. This last part means that, for example, once a read on

port 1 occurred, we cannot have a write on port 1.

The notion of ports is crucial for the performance of hardware designs but it adds

some complexity to the semantics of Kôika. In the rest of this chapter, we ignore them

for the sake of simplicity, although they are fully supported in the implementation.

2.5.3 Verifying Kôika designs

Although it is possible to prove properties about the behavior of simple Kôika circuits

using the language in its current state, this becomes impractical as the designs grow

in complexity. Indeed, performance deteriorates very fast. There are multiple causes

for this issue, which is the consequence of design choices in the Kôika language and of

properties of the Coq proof assistant, in which the reasoning is carried out.

First, the semantics of Kôika is inherently non-modular. Consider, for instance, a

single register written inside one of the rules of a Kôika design. In order to determine

whether this register write occurs, one needs to check whether this rule runs or is

canceled for the current cycle. Cancellation conditions, which depend on the evaluation
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Registers: {r0, ..., r15}.

Rule tick:
write r0 (read r0);
write r1 (read r1);
...
write r14 (read r14);
write r15 (read r15).

Schedule: [tick].

Figure 2.15: A simple design with many independent writes

of all the previous rules, can get quite involved. Not only is this tricky to reason with,

but it can also degrade the performance of proofs involving complex designs.

Another limiting factor is related to the techniques for proofs by computation in Coq.

When considering the behavior of programs with concrete inputs, efficient Coq tactics

for normalization, such as cbv or vm_compute, can be applied. However, although these

tactics are usually very efficient, their behavior cannot be controlled in great detail.

For programs whose inputs are not all known, this approach often runs naively into

combinatorial explosions. On the other hand, tactics such as cbn or simpl are an apt

tool for reasoning about programs whose inputs are at least partially abstract. Indeed,

these tactics can be parameterized to try and avoid running into the performance traps

that would block cbv or vm_compute. Alas, even for these tactics, the level of control falls

short of our needs: we often need to be able to apply transformations to some subterms

of our context and these subterms only. Eagerly applying a tactic to the wrong subterm

may take our context size from very large to unmanageable.

We introduce an example of a Kôika design in Figure 2.15. It contains a single rule

with a sequence of writes, each targeting a different register. The design contains a total

of twenty-one registers. Real-life examples usually contain more registers and actions

than this one and include more complex constructs (e.g., conditionals and let-defined

variables). Note that there cannot be a conflict in this rule as all writes target different

registers.

Consider the following property about this design, which says that the initial and

54



2.5. The Kôika language

final values of 𝑟 are distinct:

(interp_cycle([tick], 𝜎))(𝑟15) = 𝜎(𝑟15)

It should be relatively easy to demonstrate. The first fifteen writes can safely be

ignored, as they do not influence the final value of r15, the only register considered

in the property. The value of r15 is preserved on each cycle, meaning the property is

trivially true.

However, there is no straightforward way of implementing this proof using vanilla

Kôika and Coq. Proofs built using the constructs provided by the original developers of

the language run for about ten minutes on a machine equipped with an Intel i5-1240P

CPU, even for such a simple program and property
2
. This problem worsens when

larger designs with more registers, actions, and complex constructs are considered. We

present our methodology to find a way around Coq’s and Kôika’s performance issues

when reasoning on large designs in Section 4.1.

Section recap

In this section, we presented the Kôika language. After a high-level overview of

what it means for Kôika to be a rule-based language, we discussed the syntax

and semantics of the language before turning to its limitations regarding proofs.

Kôika’s semantics is well-suited to its initial purpose as a backbone for proving

metaproperties of the language (e.g., for verifying that the semantics is preserved

under compilation or that the ORAAT property is indeed enforced). However, we

showed how its general structure might make it ill-suited to the formal verification

of large-scale designs.

2
See https://gitlab.inria.fr/SUSHI-public/FMH/koika/-/blob/bad performance example/

examples/bad performance.v
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Chapter 3

State of the art

In this section, we discuss the state of the art in domains relevant to this work.

Chapter outline

The current state of verification in the industry is described in Section 3.1. Both

formal and non-formal tools and methods are considered. We discuss proof

assistant-based formal verification of hardware in Section 3.2.

3.1 Verification in the industry

Hardware security forms the backbone of computer security. The weight of this re-

sponsibility, compounded by the fact that vulnerable hardware cannot be patched

like software, compels hardware designers to meticulously verify their designs before

moving them into production.

Section outline
In this section, we describe the state verification within the industry. Section 3.1.1

considers non-formal approaches while Section 3.1.2 considers formal ones.

3.1.1 Non-formal verification

Not all verification is formal. In addition to the guarantees built into HDLs (e.g.,

type systems), test suites are standard in the industry. Universal Verification Method-

ology [57] (UVM) is a standardized methodology for hardware verification that is

supported by most EDA software vendors. The SystemVerilog framework that UVM

defines is used for building reusable testbenches.

Fuzzing-based [58] approaches, such as Constrained Random Verification (CRV),

are also standard [59]. With CRV, test cases matching some constraints are generated

randomly. The constraints guide the fuzzer toward relevant portions of the state space.
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Synopsys VCS [60], Cadence Incisive Functional Safety Simulator [61], Siemens

Questa Advanced Simulator [62], and ALDEC’s Riviera-PRO [63] are proprietary tools

that are widely used for simulation, debugging, and testing, relying on the methods

outlined above.

Recap

While testing and fuzzing-based approaches are essential components of the hard-

ware design workflow and precious tools for verification, they come with some

strict limitations. The main one is their lack of exhaustivity: they can probe indi-

vidual paths in the state space but offer no way of generalizing. These tools are

approachable, but guarantees about the global behavior of the device under test

are beyond their reach. This approach is therefore insufficient for reaching the

highest EAL, as discussed in Section 2.2.4. In this thesis, we consider the com-

plimentary formal approach, which lifts this limitation at the cost of a significant

increase in complexity.

3.1.2 Formal verification

As mentioned in Section 2.4, although proof assistants are not used in the industry,

formal methods are represented under different forms. Bounded Model Checking

(BMC) can be applied to verify that properties hold for 𝑛 cycles. It works by considering

the states that can be reached in 𝑛 steps or less and checking that the properties hold

in all these states. Properties generated from assertions that designers put into their

designs can be automatically checked through this approach. Its main drawback is

its boundedness: it offers no way of proving that a property holds forever. Temporal

induction and k-induction [64] build on top of BMC to remedy this issue. However, this

methodology does not capture every provable property of designs. Siemens Questa

OneSpin Formal Verification Suite [65] and the Jasper FPV App [66] are industrial tools

embodying these ideas.

Equivalence checking is used to determine whether two designs are functionally

equivalent. This process involves comparing the outputs of both designs for all possi-

ble inputs to ensure they behave identically, be it through binary decision diagrams or

SAT-solvers. Equivalence checking is particularly valuable in verifying that optimiza-

tions or transformations applied during the design process do not alter the intended
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functionality. Equivalence checking is a mature technique with good industrial sup-

port. Nonetheless, it has limitations: the heuristics these tools follow work well in

typical scenarios, but they struggle to handle radical departures in design. Cadence

Conformal [67] and Synopsys Formality Equivalence Checking [68] are two industrial-

grade tools for formal equivalence checking.

Up to this point, all the tools we gave as examples were proprietary. This is repre-

sentative of the state of the industry, where such tools dominate. However, some open

alternatives exist. The Hardware Model Checking Competition [69] is a competitive

event where open systems for hardware model checking are compared. It consists of

word-level problems described using the BTOR2 [70] format. The latest iteration of

this competition was won by AVR [71], a push-button model checker that relies on the

IC3 model checking algorithm [72]. NuSMV [73] is another model checker with good

performance. Unlike AVR, it is based on binary decision diagrams.

More complete open suites include ABC [74], which targets both synthesis and veri-

fication (in the form of equivalence checking), and UCLID5 [75], a modeling, synthesis,

and verification tool. SimbiYosys [76] is a verification suite maintained by Yosys, the

team behind the Yosys open synthesis framework [10]. It is mainly geared toward

safety and liveness properties.

Moroze et al. [77] propose rtlv, a push-button approach that relies on Rosette [78], a

solver-aided language embedded within Racket that provides constructs for program

verification and synthesis. To achieve this, the authors developed a compiler that

translates a subset of Verilog into Rosette. They report strong performance in tasks

involving software running on hardware for a potentially large but bounded number

of cycles.

Recap

Formal tools in use within the industry are effective and meet their objectives

satisfactorily. However, they are less versatile than proof assistants and come

with a greater TCB imprint. Proof assistant-based formal methods address these

limitations at the cost of more manual procedures.
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3.2 Proof assistant-based formal verification
Section outline
We start with an overview of ISA-level security proofs in Subsection 3.2.1 before

turning our attention to work pertaining to the design of HDLs with built-in secu-

rity features in Subsection 3.2.2. Subsection 3.2.3 is concerned with proofs about

models of hardware, while Subsection 3.2.4 reviews formal languages that com-

pile down to Verilog, which is almost a prerequisite for a formal HDL to be usable

in practice. Finally, Subsection 3.2.5 provides commentary on micro-architectural

security proofs. Subsection 3.2.6 closes this section with a presentation of work

related to the notion of hardware contracts.

3.2.1 ISA-level security proofs

ISAs are the specification that CPUs must implement. As such, they form the founda-

tion for software-level security. Recent publications have focused on proving security

properties at the ISA level. One prominent line of work aims to prove various security

properties for capability-enabled ISAs. Nienhuis et al. [79] prove capability monotonic-

ity for CHERI-MIPS, while Bauereiss et al. [80] prove it for the Arm Morello prototype.

The work of Georges et al. [81], [82] and Skorstengaard et al. [83], [84] prove a variety

of stack safety properties that can be enforced on capability machines. Similarly, Van

Strydonck et al. [85] propose a library of verified wrappers around drivers leveraging

capabilities for enforcing security properties. While these publications also define and

prove security properties about hardware, all their reasoning is done at the ISA level.

Their results do not carry to concrete hardware implementations.

3.2.2 HDLs for security

Multiple HDLs have been proposed in the literature for securely designing circuits. For

instance, Caisson [86] and SecVerilog [87] are HDLs that use information-flow types to

ensure that generated circuits are secure. They allow users to define a lattice of security

levels with which components are labeled. The system enforces that the information

flow respects the lattice of security levels in the sense that information may only flow

from higher to lower security levels. Iodine [88] and Xenon [89] use SMT-solvers to

check that cryptographic circuits execute in constant time. While these approaches
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are powerful enough for verifying specific security properties, they cannot be used to

establish more general properties of CPUs.

3.2.3 Verification of models

There is a substantial body of literature on verifying hardware models using proof as-

sistants. Lisboa Malaquias et al. [90] present a formal framework for verifying models

of real-time DRAM controllers. Another work with the same first author [91] describes

a generic framework for verifying hardware models. Similarly, Letan et al. [92] in-

troduce SpecCert, a framework for specifying and verifying hardware-based security

enforcement mechanism models.

An important limitation of these works is the distance between these models and

the actual hardware they represent. Lisboa Malaquias et al. [90] propose to generate

HDL code from the model to answer this concern. Hsia et al. [93], [94] consider the

problem from the other side. They propose to automatically derive models from RTL

descriptions of hardware (this work was not connected to proof assistants, however).

3.2.4 Formal languages compiled to Verilog

We introduced the Kôika [55] language in Section 2.5. Kami [95] is another language

with a formal semantics that can be compiled down to Verilog. It was developed within

the team that published Kôika and follows the same rule-based approach. Kôika

has superseded this project, as this latter work offers a more precise, cycle-accurate

approach. Thomas Bourgeat’s PhD thesis [96] describes Fjfj, another project derived

from Kami with a focus on modularity. This thesis explores how modular proofs can be

constructed in practice within this framework through the use of simulation relations

between specifications and implementations. Although this is illustrated on examples

tied to functional properties of processors, many of the principles at play are relevant

in the context of the verification of security properties. It should be noted that Fjfj is

not yet publicly available.

Vericert [97], [98] is a formally verified high-level synthesis tool based on CompCert

that transforms C code into Verilog but lacks support for implementing pipelines, which

is crucial for implementing efficient CPUs.

Lööw et al. [99] present a HOL4-based system for the verified synthesis of Verilog

code as part of the CakeML project [100]. Specifically, it has been used for designing
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a basic sequential CPU implementing a custom instruction set. Dong et al. [101], [102]

propose a pipelined implementation of the same ISA. They verify that the result is

valid with regard to the Silver specification (a functional property) using the HOL4

proof assistant. Furthermore, they guarantee the absence of unexpected side-channels

(a security property) through an analysis relying on observational models, although

this result is not backed by a machine-checked proof. In contrast, our work focuses

on machine-checked proofs of such security properties (we also use the more popular

RISC-V ISA, although the previous results are not tied to the Silver ISA).

Lööw extends the work with Lutsig [103], [104], a verified compiler from a subset

of Verilog down to a technology-mapped netlist. As such, they cover ground beyond

what we cover in this thesis, bringing verification one step closer to the metal.

Cava [105] is a Lava-inspired [23] DSL embedded within Coq. It was developed as

part of Google Research’s Silver Oak project, which was about building high assurance

variants of some peripherals used in OpenTitan [106] (an open-source silicon Root of

Trust project). The stated design goals of this project are close to what we advocate

for in this thesis. Alas, this project appears to have been abandoned before reaching

maturity.

The Esterel project embodies another line of work with both software and hardware

applications. These distinct applications are handled through two different languages

that are offshoots of an earlier, unified one: Esterel [107] is hardware-oriented (com-

piling to Verilog or VHDL) whereas Lustre [108] is software-oriented (compiling to

Ada or C). Esterel and Lustre are synchronous programming languages, i.e., they were

conceived to help with the design of reactive systems. Not only do these languages en-

force guarantees required by synchronous systems (determinism, boundedness in time

and space), they are also connected to various automatic verification tools. Lustre is

actively used for software verification in the industry, especially in the automotive and

aerospace sector. For instance, the Lustre-based Ansys SCADE suite [109] is commonly

used to verify critical embedded software; in particular, it is certifiable according to

safety DO-178C DAL A, the most stringent level attainable in this certification scheme

of software-based systems for aerospace [110], [111]. Alas, the same cannot be said

of Esterel, as the rights to this language are currently held by a private owner who

keeps the project in stasis. The most recent publicly available version of the Esterel,

v5_92 [112], was released in 2000. One of the most recent work in this area is a 2019

preprint by G. Berry et al. [113] discussing the formalization of Esterel’s semantics in the

62



3.2. Proof assistant-based formal verification

Coq proof assistant. Additionally, methods used to verify Lustre designs could apply

to the verification of hardware, owing to the closeness that exists between synchronous

languages in general and rule-based HDL.

3.2.5 Micro-architectural security proofs

Erbsen et al. [114] describe the implementation of a certified IoT lightbulb with the Kami

HDL. This work also blends formal verification of hardware and software. The main

theorem it defines relates to the validity of the behavior of the application controlling

the lightbulb. Properties of the hardware, compiler, drivers, and applications are

formally verified and contribute to the final proof. Since those elements may vary

independently of the others, special attention was given to the proof modularity. While

this work does not focus on security properties and relies on Kami, which lacks cycle-

accurate semantics, it focuses on aspects of hardware verification that complement our

research. Although we are not yet addressing hardware/software interactions, the

methodology it explores could inform our future work.

Choi et al. [115] describe Hemiola, a Coq framework composed of a DSL for specify-

ing cache-coherence protocols embedded within Coq alongside machinery for reason-

ing about such protocols. As such, this project has a more restricted scope than what

we are aiming for. Hemiola can generate Kami-based microarchitectural descriptions

of hardware implementing such protocols.

Lau et al. [116] verify isolation properties of hardware defined within Coq through

the Kôika HDL. They introduce a methodology that relies on MTIsolation, a custom

tool that discharges goals to an external SMT-solver. They apply this methodology to

the verification of a multicore, pipelined RISC-V processor equipped with an enclave

mechanism. They prove that this mechanism is not affected by contention-related

timing side channels. Although their methodology is focused on specific attacks, it

is pretty close to what we advocate for in this thesis. Nevertheless, how easily their

approach could be generalized to other security properties is unclear.

Lisboa Malaquias et al. [117] use Cava to construct formally verified memory con-

trollers. They prove a bisimulation relation between a simple formal model of a con-

troller and a more complex RTL circuit that refines it. It is unclear how well this

methodology scales beyond the provided example, as processors typically do not have

formal models as simple as those for memory controllers. The controller’s verifica-
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tion already takes on average more than 20 minutes on an i5-10210U CPU clocked at

1.60GHz, with memory usage peaking at more than 5GiB, although it should be noted

that the authors of this work emphasized that their focus was not on performance.

Knox [118], [119] is a framework for building high assurance Hardware Security

Modules (HSM) that is built on top of Rosette [78]. It can be used to prove that a

Verilog implementation correctly refines a functional specification defined as a state

machine. In contrast to our work, theirs is specific to HSM and cannot be used to prove

general-purpose security properties.

3.2.6 Hardware contracts

Bidmeshki et al. [120] introduce VeriCoq, a framework for generating Coq definitions

from Verilog designs. It is based on PCHIP [121], a hardware adaption of the principles

of proof-carrying code. The core idea of this approach is that a set of formal require-

ments about the hardware design should be specified a priori and that the vendor should

present formal certificates to customers. VeriCoq provides a Coq representation of a

subset of Verilog, but it stops short of providing a verification framework.

Guarnieri et al. [122] focus on the specification side of things. They put forward

a framework for specifying hardware-software contracts for security properties and

provide a security properties-oriented specification of hardware mechanisms for secure

speculation. However, they are not concerned with how the specification is enforced.

The CLI stack represents an early and influential take on processor verification,

starting in the late 1980s and culminating with the fabrication of a verified FM9001

processor [123] in the early 1990s. The CLI stack encompasses both hardware and

software verification. It includes a simple verified operating system [124] as well as

verified compilers [125], [126]. The FM9001 itself is a very simple sequential processor

implementing a custom ISA and lacking I/O mechanisms [127] that was built using

the custom RTL HDL DUAL-EVAL [128]. The authors include unverified tools for

converting DUAL-EVAL designs to Verilog.

The CLI stack was built in the Lisp-based proof assistant Nqthm. Work on this

project led to an improved, industrial strength version of Nqthm called ACL2 [129] that

is still used to this day in academia as in the industry [130]. For instance, Goel et al. [131]

describe the verification of the implementation of a subset of the x86 instructions. They

verify relevant RTL blocks and assume a certain behavior for the rest of the system.
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Although their project does not tackle end-to-end verification, it should be noted that

the processor being verified is a complex, modern one, that was being developed by

Centaur Technology for commercial purposes.

The Verisoft [132] stack is a project from the 2000s with a scope comparable to that

of the CLI project. VAMP [133], the Verisoft processor, is more complex than FM9001.

It proposes an out-of-order implementation of the DLX ISA. The processor can be

converted to Verilog through unverified tools, with the result running on an FPGA.

The verification of VAMP was initially done in the PVS proof assistant [134], [135] but

eventually ported to Isabelle/HOL [136]. Like the CLI stack before it, the Verisoft

project covers the software side of things, including a basic verified micro-kernel [137]

and a verified compiler for C0 [138], a garbage-collected C-like programming language.

In a more recent work (2014), Kovalev et al. [139] describe a formally verify pipelined

multicore RISC machine. Alas, the proofs they present are paper-and-pencil only.

Lööw et al. [140] describe a modern example of cross-stack formal verification, where

proofs about the software rely on formally certified hardware properties, in the line of

the CLI and Verisoft stacks. The stack is implemented in CakeML [100] and targets

a custom architecture instead of a standardized ISA [99]. The processor is a simple

sequential one that is not too different from the CLI one. In particular, it is simpler than

the Verisoft one, although it should be noted that the CakeML stack brings verification

down to the level of technology-mapped netlists [103], as mentioned in 3.2.4.

Neither the CLI nor the Verisoft nor the CakeML stack are concerned with security

properties. Nonetheless, they consider the related problem of functional verification of

hardware. Techniques that apply to this problem usually also apply to the verification

of security properties. In the case of the CLI and of the CakeML stack, it is unclear

whether the proposed methods could scale beyond the simple examples they consider.

On the other hand, the methodology employed in the Verisoft stack does not suffer

from this concern, as the complexity of the example it is applied validates that it

indeed scales. The CLI and the Verisoft stacks are both inactive projects, with the latest

hardware artifacts having been released around two decades ago.

Chapter recap and take-away

This section gave an overview of the state of the art of the different domains

relevant to this work. The key takeaway is that a trade-off exists between user-

friendly yet limited automatic methods and more complex, general techniques
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based on proof assistants. This divide is not fundamental: automatic tools can

generate proofs compatible with proof assistants, bringing the benefits of au-

tomation to these high-trust environments. Indeed, we advocate for such proof

assistant-based, solver-assisted approaches throughout this thesis. We believe

these approaches are the best option for the task at hand, as they allow users to

focus on the high-level structure of the proof, abstracting over the rote mechanical

parts.

66



Chapter 4

Proving properties of Kôika designs

The formal verification of a piece of hardware at the microarchitectural level calls for

a formal semantics of the HDL in which it is formulated. Alas, the HDLs that are

prevalent in the industry (such as Verilog or VHDL) were not designed with formal

methods in mind. To achieve our goal of verifying security properties of processors

at the microarchitectural level, we could either retrofit a formal semantics onto a non-

formal language or start from a formally defined language. The former option would

allow us to target one of the main languages of the industry. However, the a posteriori

formalization of the semantics of such languages is a complex endeavor (although

there is prior work about this [141], [142], [143], there is no complete formal semantics

for these languages). The latter option is more direct than the former. Starting from a

language with a formally defined semantics, all that is left to do is to import a design and

verify whatever properties we set our sights on. Consequently, this approach allows

us to directly identify the challenges of formal verification at such a scale and gives us

insight into how an efficient formal semantics could be designed for an industrial-grade

HDL.

This chapter is about our experience with this latter approach. We start from

Kôika [55], an HDL with a formal semantics and a verified compiler down to some

subset of Verilog. Kôika is embedded within the Coq proof assistant. Conveniently, it

is shipped with an implementation of a pipelined RV32I processor. We describe this

language and how we extend it to make it more amenable to proofs, using the verifi-

cation of the processor mentioned above augmented with a hardware-based shadow

stack as our running example.

Chapter outline

We introduced the Kôika language and its semantics back in Section 2.5, men-

tioning challenges that must be overcome for formal verification. Section 4.1, the

central part of this chapter, discusses how we had to modify Kôika to make it
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better suited to formal reasoning about hardware. Section 4.2 is a concrete show-

case of an application of the methodology we implemented to verify a processor

extended with a hardware-based shadow stack. In Section 4.3, we present an

extension of the verification process that includes automatic procedures to reduce

the reliance on user guidance. Finally, Section 4.4 discusses the limitations of this

project and future work. We close this chapter in Section 4.5.

4.1 A methodology for verifying Kôika designs

We propose a low-level representation, which we call an Intermediate Representation

for Reasoning (IRR). This representation allows us to circumvent the limitations exposed

in the previous section. With it, rules cancellation and conflict resolution become

explicit. While this produces rather large terms, reifying these computations makes

simplifying and storing them possible. This way, for instance, the condition describing

when a rule is canceled is computed precisely once rather than each time we consider

the value of any register. The subterms corresponding to registers impacted by a rule

would then reference the subterm corresponding to its cancellation condition to check

whether or not to apply its effects.

Section outline
This section describes this alternative semantics and how it fits in the bigger

picture of the formal verification of properties of Kôika designs. Subsection 4.1.1

starts by giving a high-level overview of our proof methodology before discussing

the representation in detail in Subsection 4.1.2. In Subsection 4.1.3, we describe

our compilation pass from Kôika designs down to this alternative representation.

The compiler is verified, and we describe our semantics preservation proof in

Subsection 4.1.4. Finally, Subsection 4.1.5 presents our tooling for working with

IRR terms.

4.1.1 A high-level overview

Our methodology for proving security properties on Kôika designs is illustrated in

Figure 4.1. Starting from the Kôika design, we obtain the first IRR, IRR0, from a

verified compiler that we describe in Subsection 4.1.3. IRR0 is then transformed into
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Kôika form
high-level,

atomic rules

Low Kôika form
quasi Verilog,

everything parallel

IRR0 IRR1 IRR. . . IRR𝑛

Security properties

≡

≡ ≡ ≡ ≡

Figure 4.1: Overall structure of our proofs on Kôika designs

a sequence of IRRs, each simpler to reason about than the previous one. Applying

these transformations passes is part of the proof development process. It can be done

manually or through tactics that automatically apply appropriate passes depending

on the form of the goal and the hypotheses. Users can easily define additional tactics

tailored to their work using Coq’s built-in facilities. We describe these transformations

in Subsection 4.1.5. Each transformation pass is formally verified. Therefore, the proofs

we carry out on the transformed IRRs also hold for the initial IRR and the initial Kôika

design. Starting from the initial IRR0, we repeatedly apply transformation passes until

we end up with an IRR𝑛 that is amenable to a classical proof of our security property.

Finally, from Kôika’s compiler correctness, we know that the security property holds

for the Verilog code that will be simulated or synthesized.

4.1.2 An intermediate representation for reasoning

We describe the syntax and semantics of our alternative representation in Figure 4.2:

an Intermediate Representation for Reasoning (IRR) is composed of a variable map 𝑉 ,

which maps variable identifiers to IRR actions, and a mapping 𝑅 from register names

to variable identifiers. We use natural numbers for the variable identifiers, although

any other type equipped with a strict order relation would do. 𝑅[𝑟] holds the variable

identifier corresponding to the value of register 𝑟 after one clock cycle, whose contents

can be recovered from the variable map 𝑉 .

An IRR action is a static counterpart to Kôika actions. These IRR actions can be con-

69



Chapter 4 – Proving properties of Kôika designs

IRR actions
irra ::= 𝑣 ∈ val | 𝑥 | 𝑟 | ⊲ irra | irra ⊲⊳ irra

| irra ? irra : irra
IRR objects
irr ::= {𝑉 : N ↩→ irra ; 𝑅 : reg → N}

Semantics of IRR actions
J𝑣Kirr

𝜎 := 𝑣 (𝑣 ∈ val)
J𝑥Kirr

𝜎 := J𝑎Kirr
𝜎 if irr.𝑉(𝑥) = 𝑎

J𝑟Kirr
𝜎 := 𝜎(𝑟)

J⊲irraKirr
𝜎 := ⊲JirraKirr

𝜎
Jirra1 ⊲⊳ irra2Kirr

𝜎 := Jirra1Kirr
𝜎 ⊲⊳ Jirra2Kirr

𝜎

Jirra1 ? irra2 : irra3Kirr
𝜎 := Jirra1Kirr

𝜎 ≠ ®
0 ? Jirra2Kirr

𝜎 : Jirra3Kirr
𝜎

Figure 4.2: Syntax and semantics of IRR actions

stant values (𝑣), variables (x), registers (𝑟), unary operations (⊲irra), binary operations

(irra ⊲⊳ irra), or conditional expressions (irra ? irra : irra), as illustrated in Figure 4.2.

Compared with Kôika actions, the main difference is that register read and write oper-

ations have disappeared. Indeed, IRR actions are free of side effects.

IRR variables do not always represent values of registers or let-bound variables.

Instead, they can be arbitrary expressions. For instance, a variable may be defined

to store some recurring subterm. Then, instances of the subterm in question in other

variables could be replaced with references to this variable, which would help keep the

memory footprint in check. The IRR action associated with a variable 𝑥 in our IRR can

reference only variables whose identifier 𝑦 is strictly below 𝑥. This well-formedness

condition ensures that there is no cyclic dependency between variables. Hence, the

evaluation of these expressions terminates. We can therefore define the evaluation

function JirraKirr
𝜎 , which evaluates an IRR action irra into a value. It is parameterized by

an IRR irr (for resolving variables) and an environment 𝜎 (that holds the initial values

of registers). The definition is given in Figure 4.2.

Let us consider, for instance, the action a + 𝑣7. Its evaluation Ja + 𝑣7Kirr
𝜎 would be

decomposed into JaKirr
𝜎 + J𝑣7Kirr

𝜎 . The first part JaKirr
𝜎 , i.e. the evaluation of register a will

simply be a lookup into the environment: 𝜎(a). The second part will look up variable

𝑣7 in the IRR and then recursively apply the evaluation function on the IRR action
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associated with 𝑣7.

Although the representation we introduce is tailored to languages of the Blue-

spec family, similar representations can be more generally applied to control partial

interpretation in Coq. Indeed, there are many similar situations that Coq’s built-in

interpretation tactics cannot handle conveniently. Making everything explicit helps

with making the performance cost of tactics predictable. In fact, IRR is very close to

gated static single assignment form [144], a representation with applications in static

analysis and compiler optimization passes.

4.1.3 From Kôika rules to IRR

Our first objective is to build an IRR object from a Kôika design. We handle each rule

in the Kôika design according to its scheduling order. For each rule, we perform a kind

of abstract interpretation of the action, as shown in the definition of 𝐾2𝐼 in Figure 4.3.

The parameters of the compiler are:

• The Kôika action 𝑎 to be compiled

• A projection Π : Reg + Var → N that maps Kôika variables and registers to IRR

variable identifiers

• A mapping𝑉 : N → irra from variable identifiers (natural numbers) to IRR actions

• The next fresh variable identifier 𝑓

• 𝑃, an IRR action representing the condition guarding the current path

• An abstract schedule log 𝐿♯

• An abstract rule log 𝑙♯

The result of compiling an action with 𝐾2𝐼 is a 6-tuple (irra,Π′, 𝑉 ′, 𝑓 ′, 𝐹, 𝑙′♯) where

irra is the IRR action corresponding to the input Kôika action, Π′
, 𝑉 ′

, 𝑓 ′ and 𝑙′♯ are the

updated values ofΠ,𝑉 , 𝑓 and 𝑙♯, and 𝐹 is the action’s failure condition, i.e., an IRR action

expressing the conditions under which the current action will fail. The abstract logs

record all the potential read and write events, together with an IRR action representing

the condition under which these read and write events occurred. More precisely,

abstract logs (𝐿♯ and 𝑙♯) are of type {wr, rd} × Reg → irra. For example, 𝑙♯(wr, 𝑟) is an

IRR action that represents the conditions under which a write has occurred on register

𝑟. The logs are updated when compiling register reads and writes (see Figure 4.3): the

notation 𝑙♯[(𝑘, 𝑟) ∨↦−→ 𝑃] means the mapping 𝑙♯ updated for key (𝑘, 𝑟), where the new

value is old ∨ 𝑃, where old is the old value of the mapping for that key. The may_read♯
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𝐾2𝐼(𝑎,Π, 𝑉 , 𝑓 , 𝑃, 𝐿♯ , 𝑙♯) =
match 𝑎 with
| 𝑣 → (𝑣,Π, 𝑉 , 𝑓 , false, 𝑙♯)
| 𝑥 →

let 𝑣 = Π(𝑥) in (𝑣,Π, 𝑉 , 𝑓 , false, 𝑙♯)
| read 𝑟 → let 𝑣 = Π(𝑟) in

let mr = may_read♯(𝐿♯ , 𝑟) in
(𝑣,Π, 𝑉 , 𝑓 ,¬mr, 𝑙♯[(rd, 𝑟) ∨↦−→ 𝑃])

| write 𝑟 𝑎 →
let (irra,Π, 𝑉 , 𝑓 , 𝐹𝑎 , 𝑙♯) =
𝐾2𝐼(𝑎,Π, 𝑉 , 𝑓 , 𝑃, 𝐿♯ , 𝑙♯)

in
let mw = may_write♯(𝐿♯ , 𝑙♯ , 𝑟) in
let (𝑉,Π, 𝑓 ) =

(𝑉[ 𝑓 ↦→ irra],Π′[𝑟 ↦→ 𝑓 ], 𝑓 + 1)
in
(⊥,Π, 𝑉 , 𝑓 , 𝐹𝑎 ∨ ¬mw, 𝑙♯[(wr, 𝑟) ∨↦−→ 𝑃])

| 𝑥 := 𝑎 →
let (irra,Π, 𝑉 , 𝑓 , 𝐹, 𝑙♯) =
𝐾2𝐼(𝑎,Π, 𝑉 , 𝑓 , 𝑃, 𝐿♯ , 𝑙♯) in

let (Π, 𝑉) = (Π[𝑥 ↦→ 𝑓 ], 𝑉[ 𝑓 ↦→ irra]) in
(⊥,Π, 𝑉 , 𝑓 + 1, 𝐹, 𝑙♯)

| if 𝑐 then ta else fa →
let (irracond,Π, 𝑉 , 𝑓 , 𝐹cond, 𝑙

♯) =
𝐾2𝐼(𝑐,Π, 𝑉 , 𝑓 , 𝑃, 𝐿♯ , 𝑙♯) in

let (𝑣cond, 𝑓 ) = ( 𝑓 , 𝑓 + 1) in
let 𝑉 = 𝑉[𝑣cond ↦→ irracond] in
let (irratb,Πtb, 𝑉 , 𝑓 , 𝐹tb, 𝑙

♯) =
𝐾2𝐼(ta,Π, 𝑉 , 𝑓 , 𝑃 ∧ 𝑣cond, 𝐿

♯ , 𝑙♯)
in
let (irrafb,Πfb, 𝑉 , 𝑓 , 𝐹fb, 𝑙

♯) =
𝐾2𝐼(fa,Π, 𝑉 , 𝑓 , 𝑃 ∧ ¬𝑣cond, 𝐿

♯ , 𝑙♯)
in
let (Πmerge, 𝑉 , 𝑓 ) = Πtb

⋃𝑣cond
𝑉, 𝑓

Πfb in
(irracond ? irratb : irrafb,Πmerge, 𝑉 , 𝑓 ,

𝐹cond ∨ (irracond ? 𝐹tb : 𝐹fb), 𝑙♯)
| let 𝑥 = 𝑎 in body →

let (irra,Π, 𝑉 , 𝑓 , 𝐹𝑎 , 𝑙♯) =
𝐾2𝐼(𝑎,Π, 𝑉 , 𝑓 , 𝑃, 𝐿♯ , 𝑙♯) in

let (Π, 𝑉) = (Π[𝑥 ↦→ 𝑓 ], 𝑉[ 𝑓 ↦→ irra) in
let (irrabody,Π, 𝑉 , 𝑓 , 𝐹body, 𝑙

♯) =
𝐾2𝐼(body,Π, 𝑉 , 𝑓 + 1, 𝑃, 𝐿♯ , 𝑙♯) in

(irrabody,Π[𝑥 ↦→ ⊥], 𝑉 , 𝑓 , 𝐹𝑎 ∨ 𝐹body, 𝑙
♯)

𝐾2𝐼sched(𝑠,Π, 𝑉 , 𝑓 , 𝐿♯) =
match 𝑠 with
| [] → (Π, 𝑉 , 𝑓 , 𝐿♯)
| 𝑟 :: 𝑠 →

let (_,Π′, 𝑉 , 𝑓 , 𝐹𝑟 , 𝑙♯) =
𝐾2𝐼(𝑟,Π, 𝑉 , 𝑓 , true, 𝐿♯ , 𝑙♯

0
) in

let (𝑣conflict, 𝑓 ) = ( 𝑓 , 𝑓 + 1) in
let 𝑉 = 𝑉[𝑣conflict ↦→ 𝐹𝑟] in
let (Πmerge, 𝑉 , 𝑓 ) = Π

⋃𝑣conflict
𝑉, 𝑓

Π′ in
let 𝐿♯merge =

𝜆𝑘 → 𝐿♯(𝑘) ∨ (𝑙♯(𝑘) ∧ ¬𝑣conflict)
in
𝐾2𝐼sched(𝑠,Πmerge, 𝑉 , 𝑓 , 𝐿

♯
merge)

𝐾2𝐼𝑃(𝑠) =
let (Π, 𝑉 , _, _) =
𝐾2𝐼sched(𝑠,Π0, 𝑉0, 1, 𝐿

♯
0
)

in
{ 𝑅 := fun 𝑟 ⇒ Π(𝑟); 𝑉 := 𝑉 }

Figure 4.3: The Kôika to IRR compiler
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and may_write♯ are the abstract counterpart to the may_read and may_write in Kôika

semantics. For instance, may_read(𝐿, 𝑟) = wr(𝑟, ∗) ∉ 𝐿 (see Figure 2.14). The abstract

version may_read♯(𝐿♯ , 𝑟) is defined as the IRR action ¬𝐿♯(wr, 𝑟). The condition under

which a read action fails is exactly the negation of the result of the may_read♯
function.

For an action write 𝑟 𝑎, this condition is the logical disjunction between the negation of

may_write♯ and the failure condition associated with action 𝑎.

The projection Π maps Kôika variables and registers to IRR variable identifiers.

More precisely, for each register 𝑟, Π(𝑟) corresponds to the variable holding the final

value of register 𝑟 at the end of the current cycle. Initially, Π(𝑟) maps to a variable

containing only the IRR action 𝑟. When compiling a register write (see Figure 4.3),

the projection Π is updated so that Π(𝑟) points to the new value, per the semantics of

Kôika.

One of the most involved cases for𝐾2𝐼 is the management of conditional expressions.

We construct an IRR expression for each case of the conditional expression: one when

the condition evaluates to true and another when the condition evaluates to false. This

process is materialized by the two recursive calls to 𝐾2𝐼, one with the path condition

augmented with the condition, the other with its negation. These two calls generate

two distinct projections Πtb and Πfb, that we merge using the binary operator

⋃𝑣cond
𝑉, 𝑓

. For

every Kôika variable or register 𝑘, suppose Π1(𝑘) = 𝑣1 and Π2(𝑘) = 𝑣2, then Π1

⋃𝑣cond
𝑉, 𝑓

Π2

will be a triple (𝑉 ′,Π𝑟 , 𝑓
′) such thatΠ𝑟(𝑘) = 𝑛 and J𝑛K𝑉 ′

𝜎 = J𝑣cond ? 𝑣1 : 𝑣2K𝑉
′

𝜎 . For instance,

let us consider the first conditional expression in rule r1 from Figure 4.4a. Recursively

analyzing the then and else branches yield two different IRRs: one when read a == 0

holds and register a receives the value 1, the other where register 𝑎 keeps its previous

value. The merged IRR will associate to register 𝑎 the IRR action (𝑎 == 0) ? 1 : 𝑎.

Next, depending on whether conflicts occur, the effects of rules are discarded or

applied. The function 𝐾2𝐼sched
compiles a Kôika schedule into an IRR. Each rule is

treated sequentially. For each rule, we call 𝐾2𝐼 with the current projection Π and the

current set of variables𝑉 , the current abstract schedule log 𝐿♯ and an empty initial rule

log 𝑙
♯
0
. The failure condition 𝐹𝑟 gives us the condition under which the rule failed. Like

in the conditional expression case, we need to merge the projections using

⋃𝑣conflict
𝑉, 𝑓

. We

also need to patch the abstract schedule log 𝐿
♯
merge as described in Figure 4.3 so that the

condition under which a read or write occurred is the disjunction of whether it already

occurred in the previous schedule log 𝐿♯ and whether it occurred in the new rule log 𝑙♯,

while not having a conflict. This step was unnecessary in the if-then-else case because
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we injected the condition (or its negation) in the path condition, which we cannot do

here. After all, the failure condition is the result of the compiler itself.

Figures 4.4b and 4.4c illustrate a complete example of compiling a Kôika schedule

into an IRR. Initially, we have one variable for each of the three registers 𝑎, 𝑏 and 𝑐. The

let-bound variable 𝑥 in rule r1 gives rise to 𝑣4 in the IRR, whose value is 𝑣2, the initial

value of register 𝑏. The conditions of if-then-else actions also produce variables (𝑣5,

𝑣8 and 𝑣13 in our example). For each register write, a variable is created that contains

the IRR action being written (𝑣6, 𝑣9 and 𝑣14), and yet another variable is created that

contains the new value of the register, often an if-then-else IRR action dependent on

the path condition that led us to the write (𝑣7, 𝑣10, and 𝑣15). At the end of rule r1, 𝑣11

contains the rule’s failure condition, i.e., 𝑣8 ∧ 𝑣5, i.e., “there have been two writes on

𝑎”; and 𝑣12 contains the value of register a after rule r1: “if the rule fails, the value of

a is the same as at the beginning of the cycle, otherwise it is the value after the second

if”. Similarly, 𝑣16 contains the failure condition for rule r2: “the rule fails if a write

occurred in this rule (condition 𝑣13) and a write occurred in rule r1 (¬𝑣11 ∧ (𝑣5 ∨ 𝑣8),
i.e. rule r1 did not fail and one of the writes occurred)”.

4.1.4 Correctness of the Kôika to IRR compiler

Before reasoning on the IRR, we must ensure that our compiler is correct. This sec-

tion walks through a series of definitions and lemmas that culminate in the proof of

Theorem 2, which enables one to reason about an IRR to obtain properties of a Kôika

design.

We first define a relation

log∼ between a concrete and an abstract log, establishing that

a read or write event occurs in the concrete log if and only if the condition associated

with that event in the abstract log evaluates to true.

𝐿
log∼𝑉 𝐿

♯ ≜{
∀𝑟, wr(𝑟, ∗) ∈ 𝐿⇐⇒J𝐿♯(wr, 𝑟)K𝑉𝜎 = true
∀𝑟, rd(𝑟) ∈ 𝐿⇐⇒J𝐿♯(rd, 𝑟)K𝑉𝜎 = true

We also define a relation

reg∼ between a concrete log and an IRR. This relation states

that the projection Π sends registers to IRR variables that represent their value (as

returned by a read in a Kôika action). This is captured by the do_read(𝑙 , 𝜎, 𝑟) function,

which returns a value 𝑣 if wr(𝑟, 𝑣) ∈ 𝑙, or 𝜎(𝑟) if no such write occurred.
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Registers : {a, b, c}.

Rule r1 :
let x := read b in
if read a == 0

then write a 1;
if x == 1

then write a (x + 1).

Rule r2 :
if read c == 1

then write a 3.

Schedule : [r1, r2].

(a) Kôika design

Register Variable Id
𝑎 17
𝑏 2
𝑐 3

(b) IRR representation (𝑅)

Id Value Description
1 𝑎 initial value of register 𝑎
2 𝑏 initial value of register 𝑏
3 𝑐 initial value of register 𝑐

4 𝑣2 let-binding in r1
5 𝑣1 == 0 first condition in r1
6 1 value written in the first if in r1
7 𝑣5 ? 𝑣6 : 𝑣1 value of register 𝑎 after first if in r1
8 𝑣4 == 1 second condition in r1
9 𝑣4 + 1 value written in the second if in r1

10 𝑣8 ? 𝑣9 : 𝑣7 value of register 𝑎 after second if in r1
11 𝑣8∧ 𝑣5 failure condition for r1
12 𝑣11 ? 𝑣1 : 𝑣10 value of register 𝑎 after r1

13 𝑣3 == 1 first condition in r2
14 3 value written in the if in r2
15 𝑣13 ? 𝑣14 : 𝑣12 value of register 𝑎 after the if in r2
16 𝑣13∧¬ 𝑣11∧ (𝑣5∨ 𝑣8) failure condition for r2
17 𝑣16 ? 𝑣12 : 𝑣15 final value of register 𝑎 after r2

(c) IRR representation (𝑉)

Figure 4.4: Compilation from Kôika to IRR
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𝑙
reg∼ (Π, 𝑉) ≜ ∀𝑟, ∃𝑛, Π(𝑟) = 𝑛 ∧ J𝑛K𝑉𝜎 = do_read(𝑙 , 𝜎, 𝑟)

We now define a matching relation between Kôika states (Γ, 𝐿, 𝑙) (variable environ-

ment, schedule log and rule log) and IRR states (𝑉, 𝐿♯ , 𝑙♯) (variable mapping, abstract

schedule log and abstract rule log). This relation, denoted∼Π, is indexed by a projection

Π and states that the concrete and abstract logs are related by

log∼𝑉 , both for the schedule

and rule logs; that the projection Π sends Kôika variables to IRR variables that evaluate

identically; and that the registers are accurately projected by Π, as per the

reg∼ relation.

(Γ, 𝐿, 𝑙) ∼Π (𝑉, 𝐿♯ , 𝑙♯) ≜
𝐿

log∼𝑉 𝐿
♯

𝑙
log∼𝑉 𝑙

♯

∀𝑥, ∃𝑛, Π(𝑥) = 𝑛 ∧ J𝑛K𝑉𝜎 = Γ(𝑥)
(𝐿 ++ 𝑙) reg∼ (Π, 𝑉)

We prove the following lemma about the correctness of the 𝐾2𝐼 function, which is

the essence of the proof of the compiler correctness theorem.

Lemma 1 (Correctness of 𝐾2𝐼). Consider two matching states (Γ, 𝐿, 𝑙) and (𝑉, 𝐿♯ , 𝑙♯) related
by projection ∼Π. Compiling action 𝑎 with path condition 𝑃 produces a IRR action irra together
with a new abstract state (𝑉 ′, 𝐿♯ , 𝑙′♯), and a failure condition 𝐹.

If the Kôika semantics of action 𝑎 produces a new Kôika state (Γ′, 𝑣, 𝑙′), then the IRR action
irra produced by the compiler evaluates to Kôika value 𝑣, the failure condition 𝐹 evaluates to
false, and (Γ′, 𝐿, 𝑙′) and (𝑉 ′, 𝐿♯ , 𝑙′♯) stay in the matching relation.

Otherwise, if action 𝑎 fails according to Kôika semantics, the failure condition produced by
the compiler evaluates to true. More formally,

∀ 𝑎 Π 𝑉 𝑓 𝐿♯ 𝑙♯ Γ 𝐿 𝑙 irra 𝑃 𝐹 Π′ 𝑉 ′ 𝑓 ′ 𝑙′♯ Γ′ 𝜎,

𝐾2𝐼(𝑎,Π, 𝑉 , 𝑓 , 𝑃, 𝐿♯ , 𝑙♯) = (irra,Π′, 𝑉 ′, 𝑓 ′, 𝐹, 𝑙′♯) ⇒
(Γ, 𝐿, 𝑙) ∼Π (𝑉, 𝐿♯ , 𝑙♯) ⇒ J𝑃K𝑉𝜎 = true ⇒©«
∀ 𝑙′ 𝑣 Γ′,

Γ ⊢𝐿 (𝑙 , 𝑎) ↓ (𝑙′, 𝑣, Γ′) ⇒
JirraK𝑉 ′

𝜎 = 𝑣 ∧ J𝐹K𝑉 ′
𝜎 = false ∧

(Γ′, 𝐿, 𝑙′) ∼Π′ (𝑉 ′, 𝐿♯ , 𝑙′♯)

ª®®®®®¬∧ (
Γ ⊢𝐿 (𝑙 , 𝑎) ̸↓ ⇒ J𝐹K𝑉 ′

𝜎 = true
)
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Proof. By structural induction on 𝑎. □

We use this lemma to prove Theorem 1 about 𝐾2𝐼sched
:

Theorem 1 (Correctness of 𝐾2𝐼𝑠𝑐ℎ𝑒𝑑). 𝐾2𝐼sched is a correct compiler of the semantics of Kôika
schedules. More precisely,

∀ 𝑠 Π 𝑉 𝑓 𝐿♯ Π′ 𝑉 ′ 𝑓 ′ 𝐿′♯ ,

𝐾2𝐼sched(𝑠,Π, 𝑉 , 𝑓 , 𝐿♯) = (Π′, 𝑉 ′, 𝑓 ′, 𝐿′♯) ⇒
(𝐿, 𝑠) ⇓ 𝐿′ ⇒
𝐿

log∼𝑉 𝐿
♯ ∧ 𝐿 reg∼ (Π, 𝑉) ⇒

𝐿′
log∼𝑉 ′ 𝐿′♯ ∧ 𝐿′ reg∼ (Π′, 𝑉 ′)

Proof. By induction on the schedule 𝑠.

Base case. If the schedule is empty, the theorem holds trivially because (Π′, 𝑉 ′, 𝐿′♯) =
(Π, 𝑉 , 𝐿♯) and 𝐿′ = 𝐿.

Inductive case. The schedule is of the form 𝑟::sch, and we have as an induction

hypothesis that our theorem holds for schedule sch. By the definition of 𝐾2𝐼sched
, we

have that:

1 (_,Π1, 𝑉1, 𝑓1, 𝐹𝑟 , 𝑙
♯) = 𝐾2𝐼(𝑟,Π, 𝑉 , 𝑓 , true, 𝐿♯ , 𝑙♯

0
)

2 𝑉2 = 𝑉1[ 𝑓1 ↦→ 𝐹𝑟]
3 (Π𝑚 , 𝑉𝑚 , 𝑓2) = Π

⋃ 𝑓1
𝑉2 , 𝑓1+1

Π′

4 𝐿
♯
𝑚 = 𝜆k → 𝐿♯(𝑘) ∨ (𝑙♯(𝑘) ∧ ¬𝑣conflict)

5 (Π′, 𝑉 ′, 𝑓 ′, 𝐿′♯) = 𝐾2𝐼sched(sch,Π𝑚 , 𝑉𝑚 , 𝑓2, 𝐿
♯
𝑚)

From the semantics of a Kôika schedule (Figure 2.12), the next concrete schedule

log, 𝐿′, will be either 𝐿++𝑙′ if the execution of 𝑟 yields a rule log 𝑙′, or 𝐿 if the execution

of 𝑎 fails to produce a rule log. To apply our induction hypothesis and finish the proof,

all we need to show is that 𝐿′
log∼𝑉𝑚 𝐿

♯
𝑚 ∧ 𝐿′ reg∼ (Π𝑚 , 𝑉𝑚).

Applying Lemma 1 on line 1 above gives the following:

∀ 𝐿 𝑉 𝐿♯ Π 𝑟 Π1 𝑉1 Γ0 𝜎,

𝐿
log∼𝑉 𝐿

♯ ∧ 𝐿 reg∼ (Π, 𝑉) ⇒©«
∀ 𝑙′ 𝑙♯ , Γ0 ⊢𝐿 (𝑙0, 𝑟) ↓ (𝑙′, _, _) ⇒

J𝐹𝑟K
𝑉1

𝜎 = false ∧
𝑙′

log∼𝑉1
𝑙♯ ∧ (𝐿 ++ 𝑙′) reg∼ (Π1, 𝑉1)

ª®®®¬∧ (
Γ0 ⊢𝐿 (𝑙0, 𝑟) ̸↓ ⇒ J𝐹𝑟K

𝑉1

𝜎 = true
)
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By disjunction of cases:

• Case Γ0 ⊢𝐿 (𝑙0, 𝑟) ↓ (𝑙′, _, _).
Then, J 𝑓1K

V2
𝜎 = false, hence Π𝑚(𝑘) = Π′(𝑘) for every 𝑘, and J𝐿♯𝑚(𝑘)KVm

𝜎 = J𝐿♯(𝑘) ∨
𝑙♯(𝑘)KVm

𝜎 for every 𝑘. It follows that (𝐿++𝑙′) log∼𝑉𝑚 𝐿
♯
𝑚 , and (𝐿++𝑙′) reg∼ (Π𝑚 , 𝑉𝑚).

• Case Γ0 ⊢𝐿 (𝑙0, 𝑟) ̸↓.

Then, J 𝑓1K
V2
𝜎 = true, hence Π𝑚(𝑘) = Π(𝑘) for every 𝑘, and J𝐿♯𝑚(𝑘)KVm

𝜎 = J𝐿♯(𝑘)KVm
𝜎

for every 𝑘. It follows that 𝐿
log∼𝑉𝑚 𝐿

♯
𝑚 , and 𝐿

reg∼ (Π𝑚 , 𝑉𝑚).
□

Finally, the theorem we want to prove relates the interpretation of a cycle and the

IRR obtained by compiling the schedule. We define a function 𝒞𝜎(irr) which, given an

IRR irr and an initial mapping for registers 𝜎, results in an updated register environ-

ment 𝜎′. 𝒞𝜎(irr)(𝑟) ≜ let 𝑛 = irr.𝑅(𝑟) in J𝑛Kirr
𝜎

Theorem 2 (Kôika to IRR compiler correctness). Retrieving the final value of a register 𝑟
through the IRR (compiled from a schedule 𝑠 and an initial state of registers 𝜎) or through the
Kôika semantics gives identical results. More formally,

∀𝑠 𝜎 𝑟, 𝒞𝜎(𝐾2𝐼𝑃(𝑠))(𝑟) = interp_cycle(𝑠, 𝜎)(𝑟)

Proof. By applying Theorem 1 and unfolding definitions. □

4.1.5 Verified transformation passes

We develop a toolbox of theorems and tactics in Coq for reasoning about circuits in

our IRR. Among other things, we define a set of transformation passes that can be

applied to a design in the IRR. In particular, the transformation passes provide a

way of exploiting hypotheses about the state of the environment. A combination of

simplifications and case analysis is often sufficient for discharging a goal. The reasoning

is carried out inside of Coq, so the usual facilities and methods used in this language

remain available at any time.

For instance, consider the design of Figure 4.5a, composed of a single rule. In this

rule, register b’s value is updated on every cycle. Suppose we want to prove that when

the value of a is 0 at the beginning of a cycle, the value of b will be 0 at the end of this

cycle. Formally, we would write this as:

78



4.1. A methodology for verifying Kôika designs

∀ 𝜎 irr, 𝜎(a) == 0 ⇒ 𝒞𝜎(irr)(b) = 0.

We compile the design of Figure 4.5a into an equivalent IRR, as shown in the second

column of Table 4.5b. This IRR is then processed by a sequence of transformations,

which progressively simplify it. In this example, we employ the following transforma-

tion passes:

• Prune(𝑏): remove all variables not used in the computation of the final value of

register 𝑏. We collect all the variables that may participate in the evaluation of

register 𝑏 in our IRR and prune the others. Here, the register 𝑏 is represented by

𝑣8. Variables 𝑣6 and 𝑣7 can be pruned.

• ExploitReg(𝑟, 𝑣): replace register 𝑟 with value 𝑣. Applying this transformation

generates a proof obligation: register 𝑟 holds value 𝑣 at the beginning of the cycle.

In our example, we have the hypothesis that register 𝑎 holds the value 0.

• Collapse: replace all variables with their value if this symbolic value is simple

enough (a constant, a reference to another variable, or a register). In our example,

we replace variables 𝑣1, 𝑣2 and 𝑣5 by their value.

• Simplify: compute the value of unary or binary operations for all variables in the

IRR, so long as enough of their arguments are known. This process is similar to

constant folding in traditional compilers. We also simplify boolean conjunctions

or disjunctions when one operand is known to be true or false.

All of our transformation passes preserve the semantics under some assumptions.

For instance, assuming that the value of register a is known to be 0 at the beginning of a

cycle, then replacing its appearances with 0 is correct. Coq verifies that this assumption

is met in the current context before it can apply the transformation. Similarly, evaluating

a register with an IRR in which some of the required variables have been pruned away

would be invalid. Therefore, pruning can only be applied in contexts where the final

value of a single register is being considered.

We offer additional transformation passes:

• PruneList(𝑙): remove all variables that are not used in the computation of the

final value of at least one register appearing in list 𝑙

• ReplaceVar(𝑥, 𝑣): replace variable 𝑥 with value 𝑣, given a proof that this substi-

tution is correct

• ReplaceSubact(se, 𝑣): same as ReplaceVar but for a subexpression se. All occur-

rences of this expression se in any variable of the tree can then be replaced with

the given value 𝑣.
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Registers : {a, b}.

Rule r1 :
let x := read a in
let y := read b in
if x == 0 then

write b (y - y)
else

(write b 1; write a 2).

Schedule : [r1].

(a) Example rule
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1 a 0

2 b

3 𝑣1 == 0 0 == 0 1

4 𝑣2 - 𝑣2 b - b

5 1

6 2

7 if 𝑣3 then a else 𝑣6

8 if 𝑣3 then 𝑣4 else 𝑣5 if 𝑣3 then 𝑣4 else 1 b - b

(b) Successive transformations

Figure 4.5: Example rule, its transformation into an IRR, and successive transformations
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• ExploitPartialInformation: same as ExploitReg but works when only some bits

of a register are known.

Coq makes it possible to define custom tactics to automate away part of the tedium.

We define some general tactics that take our hypotheses into account and then attempt

to simplify our design as much as possible, and that can even recognize some simple

subgoals and solve those automatically. For simple properties, proofs can run entirely

automatically.

Section recap

In this section, we presented our methodology for reasoning on Kôika designs.

We had previously explained how Kôika’s native semantics are not adapted to

formal reasoning on large designs. Here, we presented a new, lower-level, and

more explicit representation of Kôika designs that is better suited to this task. We

call this representation an Intermediate Representation for Reasoning, or IRR for

short. We presented our Kôika to IRR compiler and discussed how we formally

verified that it is semantics-preserving. Finally, we went through different verified

transformation passes for IRR that we defined and verified. These transformation

passes can be applied to simplify the IRR design progressively. They lie at the

core of our proving strategy.

In the next section, we will show how the IRR can be used in practice for verifying

a hardware mechanism targeting a RISC-V processor.

4.2 Implementing and verifying a shadow stack for a RISC-V pro-
cessor

This section illustrates the proof methodology we described in the previous section

by showing how it can be used to verify a hardware-based shadow stack (a security

mechanism described in Section 2.2.2.b) for an RV32I processor.

Kôika’s original developers designed a simple pipelined RISC-V processor that can

be specialized to cover part of the RV32I or the RV32E part of the standard. This design

does not aim for exhaustiveness and is not proven to conform to the RISC-V specifi-

cation (although it passes the RISC-V test suite for all the instructions it implements).

It demonstrates some of Kôika’s more advanced features. Our design (source) is a
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tweaked and extended version of this example.

Section outline
In Subsection 4.2.1, we describe how we expand Kôika’s RV32I processor by fitting

it with a simple shadow stack mechanism. The formal definition of the properties

we set out to verify is given in Subsection 4.2.2. The proofs are described in the

same subsection, following the methodology outlined in the previous section.

We close this section with Subsection 4.2.3, a quantitative summary of the proof

effort.

4.2.1 The shadow stack mechanism

We are interested in the property that functions return to the instruction following their

call. A possible way of guaranteeing such a property is to maintain a shadow stack, as

described in Subsection 2.2.2. As a reminder, the processor pushes the expected return

address onto this stack for each function call and pops it whenever it returns. If the

address a function tries to return to using the regular function stack is not equal to the

one on top of the shadow stack, we can deduce that something went wrong and react

accordingly
1
. Of course, we must also protect this shadow stack and prevent regular

writes to memory performed by application code to modify the shadow stack contents.

Shadow stacks can be implemented in software [145] or hardware. Although soft-

ware implementations provide some benefits (chief among them being their compati-

bility with existing hardware), we will focus on hardware implementations. These offer

the advantage of working with any program with no patching necessary.

We added a shadow stack module to the processor provided by the Kôika project.

We can prove its isolation from the core design in that the only way of acting on it is

through its two methods, push and pop. These methods are called automatically when

the current instruction corresponds to a function call or return. They both expect one

argument: the address of the instruction following the current function call for push

and the stack’s return address for pop.

The push function checks for potential overflows and pushes the address onto the

shadow stack, whereas the pop function checks for potential underflows, verifies that

1
Note that shadow stacks are a reactive mechanism (see Section 2.2). When we turn to the verification

of this mechanism, we are in effect following a preventive approach to get guarantees about a reactive

mechanism.
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the address passed as argument matches the top of the shadow stack, and pops it. If

one of these checks fails, we jump to an exception handler.

4.2.1.a Detecting function calls and returns in machine code

Contrary to CISC (Complex Instruction Set Computer) ISAs such as x86, which have

dedicated call and return instructions, RISC-V uses the same instruction for multiple

purposes. This choice is common for RISC ISAs. The JAL (jump and link) and JALR

(jump and link register) instructions implement both unconditional jumps and function

calls. However, the arguments that are passed to them make their role clear. The

Application Binary Interface (ABI) describes which JAL/JALR instructions should be

interpreted as function calls or returns, depending on their arguments. The RISC-V

specification [30] includes information regarding how shadow stacks (which they call

return-address stacks) should behave:

For RISC-V, hints as to the instructions’ usage are encoded implicitly via the

register numbers used. A JAL instruction should push the return address

onto a return-address stack (RAS) only when rd = x1/x5. JALR instructions

should push/pop a RAS as shown in the table [that follows].

rd rs1 rs1 = rd RAS action

!link !link − none

!link link − pop

link !link − push

link link 0 pop, then push

link link 1 push

Return-address stack prediction hints encoded in register specifiers used in the

instruction. [. . . ] link is true when the register is either x1 or x5.

Hence, we implement our shadow stack so that we push a return address when the

destination register is x1 or x5, and we pop when the source register is x1 or x5 and the

destination register is different from the source register.
2

Note that that for instructions

such as jalr x1, 0(x5), the shadow stack is popped before a new address is pushed

onto it. We handle this accordingly.

2
Registers x1 and x5 are also respectively known as ra (for return address) and t0.
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4.2.1.b Dealing with a detected stack buffer overflow

On a system with a full-fledged operating system, a stack buffer overflow detected

through a shadow stack mechanism could be left for the system to manage. For instance,

the affected program could be killed, and an error could be logged or displayed to the

user. In our simple embedded system, these options are not all open. The two main

possibilities for our exception handler are:

• ending the current execution;

• correcting the return address using the shadow stack information (or just relying

purely on it and ignoring return arguments).

The latter option might be tempting. However, it comes with significant downsides.

If the return address has been modified, the rest of the stack will likely be impacted

and cannot be considered safe.

Our verified stack implementation halts execution on a mismatch. In order to prove

anything about our processor halting, we first need to define what this means for Kôika

designs — this is tricky since Kôika does not have a notion of halting the execution of

a design. We consider that a system is halted when it is in a sink state:

is_halted(𝜎) ≜ ∀𝑛, 𝑟, 𝒞 𝑛
𝜎 (irr)(𝑟) = 𝜎(𝑟)

where 𝒞 𝑛
𝜎 (irr) performs 𝑛 iterations of the 𝒞𝜎 function, i.e. computes the state of each

register after 𝑛 cycles. In fact, it suffices to demonstrate the following property to obtain

a proof of is_halted for an environment.

nochange(𝜎) ≜ ∀𝑟, 𝒞𝜎(irr)(𝑟) = 𝜎(𝑟)
nochange_halted(𝜎) : ∀𝜎, nochange(𝜎) ⇒ is_halted(𝜎)

We add a register called halt to our processor, and we equip each of the rules with

a guard checking the value of this register. When it is true, no rules are run. We can

prove that it behaves as expected:

halt_1_implies_halted : ∀𝜎, 𝜎(halt) = 1 ⇒ is_halted(𝜎)

Applying nochange_halted as well as transformation passes ExploitReg, Simplify

and Prune gets us most of the way for this proof. We then need to show that the value

of any individual register is left unchanged during the next cycle. At this stage, the
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demonstration of this property is trivial.

For simulation and synthesis, we emit an external call bound to a Verilog module,

which halts the processor’s execution whenever we set the value of halt to 1.

4.2.2 Formally verified properties

We are interested in proving four properties. In plain English, they may be worded as:

• “any overflow in the shadow stack leads to the immediate halting of the proces-

sor”;

• “any underflow in the shadow stack leads to the immediate halting of the proces-

sor”;

• “when returning from a procedure, if the stack and the shadow stack disagree on

the return address, then the processor halts immediately”;

• “in all other situations, the behavior of the processor remains unchanged”.

Our processor now contains an additional variable (sstack) that stores the shadow

stack data (a vector for the stack data and a variable for a count of how many items

are currently stored on the stack). Hereafter are some helpful definitions related to this

variable that we will use throughout our proof:

sstack_empty(𝜎) ≜ 𝜎(sstack.sz) == 0

sstack_full(𝜎) ≜ 𝜎(sstack.sz) == sstack.capacity
sstack_top(𝜎) ≜{

∅ if 𝜎(sstack.sz) is 0

𝜎(sstack.stack[𝜎(sstack.sz)]) otherwise

Our processor is pipelined, which implies that several instructions are in-flight at

the same time. Nonetheless, there is at most one instruction at the execute stage at any

point, and all calls to shadow stack functions occur there.

Predicates sstack_push and sstack_pop express the conditions under which a push

or a pop takes place. Their definitions amount to checking whether the instruction

in the execute stage corresponds to a procedure call or return, as per the specification

excerpt introduced in Subsection 4.2.1.a.

sstack_push(𝜎) ≜ is_call_instruction(𝜎(d2e.dInst.inst))
sstack_pop(𝜎) ≜ is_ret_instruction(𝜎(d2e.dInst.inst))
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Functions is_call_instruction and is_ret_instruction are in turn defined in

Coq. For a more concrete example, the definition of is_call_instruction is given in

full below (source):

Definition is_call_instruction (instr: bits_t 32) : bool :=

let bits := vect_to_list (bits_of_value instr) in

let opcode_ctrl := List.firstn 3 (List.skipn 4 bits) in

let opcode_rest := List.firstn 4 (List.skipn 0 bits) in

let rs1 := List.firstn 5 (List.skipn 15 bits) in

let rd := List.firstn 5 (List.skipn 7 bits) in

(eql opcode_ctrl (rev [true; true; false]))

&& (

(

(eql opcode_rest (rev [true; true; true; true]))

&& (

(eql rd (rev [false; false; false; false; true]))

|| (eql rd (rev [false; false; true; false; true]))))

|| (

(eql opcode_rest (rev [false; true; true; true]))

&& (

(eql rd (rev [false; false; false; false; true]))

|| (eql rd (rev [false; false; true; false; true]))))).

The no_mispred construct is used for dealing with the mispredictions that can result

from branch instructions. The effects of a mispredicted instruction have to be ignored.

When an instruction reaches the execution stage of the pipeline, it is already known

whether or not it belongs to a mispredicted branch and, therefore, whether or not it

has to be ignored. The function candidate_return_address gives the address that the

current instruction attempts to return to, assuming it is a procedure return.

We give formal definitions for the first three properties we mentioned earlier:

sstack_uflow(𝜎) ≜ no_mispred(𝜎) ∧ sstack_empty(𝜎) ∧ sstack_pop(𝜎)
sstack_oflow(𝜎) ≜

no_mispred(𝜎) ∧ sstack_full(𝜎) ∧ ¬sstack_pop(𝜎) ∧ sstack_push(𝜎)
sstack_violation(𝜎) ≜

no_mispred(𝜎) ∧ sstack_pop(𝜎) ∧ candidate_return_addr(𝜎) ≠ sstack_top(𝜎)
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Note that we explicitly mention both sstack_pop and sstack_push in sstack_uflow.

Indeed, the chart presented in Subsection 4.2.1.a shows that for instructions such as

jalr x1, 0(x5), the shadow stack is popped before a new address is pushed onto it.

This situation is the only one where something may get pushed to a stack that was full

at the beginning of the cycle without running into an overflow.

We show that these three ways of violating the shadow stack policy result in the

halting of the processor.

• sstack_uflow_implies_halt: ∀𝜎, sstack_uflow(𝜎) ⇒ is_halted(𝒞𝜎(irr))
• sstack_oflow_implies_halt: ∀𝜎, sstack_oflow(𝜎) ⇒ is_halted(𝒞𝜎(irr))
• sstack_addr_violation_implies_halt:

∀𝜎, sstack_violation(𝜎) ⇒ is_halted(𝒞𝜎(irr))

The proofs of sstack_uflow_implies_halt, sstack_oflow_implies_halt and

sstack_addr_violation_implies_halt share some similarities. In all of them, we start

by applying halt_1_implies_halted. We must then prove that the final value of halt

is 1. A logical first step is to apply the Prune transformation pass: we do not care about

the variables irrelevant to the final value of halt. We can also exploit our hypotheses.

For instance, for sstack_underflow_implies_halt, we know, among other things, that

the shadow stack is empty and that the instruction in the execute stage of the pipeline

corresponds to a return instruction. We can exploit this information to simplify the

design further. Some case analysis is required to fully exploit the information about the

executed instruction. Indeed, as was shown in Subsection 4.2.1.a, a pop should occur

in two situations:

• when rd is neither x1 or x5 and rs1 is either x1 or x5;

• when both rd and rs1 are x1 or x5 but rd ≠ rs1.

In all branches, the rest of the proof is trivial. The proofs of the two other properties

follow a similar pattern.

There remains a last property to demonstrate. To prove that our shadow stack does

not interfere with the rest of the processor, we need to show that, starting from the

same environment and after one cycle, in the absence of a shadow stack violation, the

value of the registers that were not introduced for the shadow stack is the same in the

vanilla design as in the modified one.
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Kôika 48971 LOC
.. .of which proof framework 18999 LOC
Processor 8679 LOC
.. .of which core 1478 LOC
.. .of which shadow stack 103 LOC
Properties and proofs 1740 LOC

Figure 4.6: Table of Lines Of Code (LOC) for different tasks

Formally, we write this as:

sstack_no_interferences :

∀ 𝜎, 𝜎(halt) = 0

⇒ ¬sstack_violation(𝜎)
⇒ ¬sstack_uflow(𝜎)
⇒ ¬sstack_oflow(𝜎)
⇒ ∀ 𝑟, (𝑟 ≠ sstack[·])
⇒ 𝒞𝜎(irr_basic) 𝑟 = 𝒞𝜎(irr_sstack) 𝑟

Once again, we start by exploiting some known values through the ExploitReg

transformation and keep simplifying the design with Simplify and Prune (using the

variant PruneList this time, with all the registers, except those that are related to the

shadow stack).

The shadow stack is only ever accessed from the rule corresponding to the execute

stage in our design. Furthermore, accesses to the shadow stack do not modify registers

of the basic Kôika design except for halt. The only variables specific to the shadow

stack-enabled version that remain in the IRR after the call to PruneList are those that

impact halt. However, it can be shown that ¬stack_violation implies that the value

written to halt is 0. In other words, the write in question does not update the value of

halt. Therefore, some surgical applications of ReplaceVar allow us to remove precisely

the parts that differ between our two designs. Then, our two IRRs are equal, and the

goal is trivially true.

4.2.3 Quantitative summary

Figure 4.6 gives a breakdown of the code footprint of different parts of this work. This

footprint, given in lines of code, considers the original Kôika code and our modifica-
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tions.

Complete verification of the proofs takes slightly more than 10 minutes and uses

a substantial amount of RAM (around 16GB) on a 12th Gen Intel i5-1240P processor

running at 4.4GHz.

A considerable amount of human effort was put into verifying the shadow stack.

Putting an exact figure on how much time this represented would be hard — work on the

proof proceeded in parallel with work on the framework. Regardless, this verification

process was more complex than we had hoped: in addition to being entirely manual,

it necessitated a high degree of expertise. In Section 4.3, we will see how we remedied

this issue through the integration of powerful automatic procedures that can handle

the bulk of the proof obligations in practice.

4.2.4 Experimental evaluation

This section explains our experimental setup and how to use our verified hardware in

practice.

Simulation of Kôika with Cuttlesim We verify the overall functional correctness of our

modified RISC-V processor by running it on Cuttlesim, the C++ simulator provided by

the Kôika project that directly interprets and simulates the Kôika language. We run a

test suite that targets all the instructions in the RV32I subset separately. All the tests

provided with the original Kôika still pass with our modified processor.

Experimental validation of the shadow stack Even with the proof of Section 4.1, it is valu-

able to test whether our shadow stack detects a trivial overwriting of a function’s return

address. This process cross-validates the theorems we proved earlier, which indeed

entail a security property.

Figure 4.7 (which we already met as Figure 2.2) shows a C program that exhibits

a trivial buffer overflow: buffer buf in function f is 16-byte long, and the strcpy

function performs no bounds checking before copying the buffer attack_buf, which is

24-byte long. Because we know the memory layout of this program, we know where

in attack_buf we should place the address we want to jump to so that it will overwrite

the vulnerable function’s return address. Our shadow stack module should detect this

violation and halt our processor before we even jump to that new return address. We

run this program with the Cuttlesim simulator, once with the shadow stack deactivated
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void bad(){
puts("Bad!\n");

}

int f(char* s){
char buf[16];
strcpy(buf,s);

}

int main(int argc, char* argv[]){
int attack_buf[6];
attack_buf[5] = (intptr_t)&bad;
f((char*)attack_buf);

}

Figure 4.7: A program vulnerable to buffer overflows
This program overwrites its return address

Shadow stack Clock frequency Used logical cells Critical path
(MHz) (out of 7680) (ns)

Without 22.07 7049 (91%) 45.4
With 20.49 7463 (97%) 48.8

Figure 4.8: Impact of the addition of the shadow stack on performance metrics

and once with the shadow stack activated. In the first case, the buffer overflow succeeds,

and we observe that the program writes the string "Bad!" to the console. On the other

hand, when run with the shadow stack activated, we observe that the execution exits

abruptly. By inspecting the final state of the Kôika design manually, we see that the

halt register is set, and the instruction that was being executed at that point is precisely

the ret instruction in the f function.

Synthesis on the TinyFPGA BX board We successfully ran the Verilog output of the Kôika

compiler on our modified RISC-V processor through the Yosys synthesis suite. Fig-

ure 4.8 gives a rundown of the effect of this addition on different metrics. The shadow

stack that we could fit on this board alongside the processor has a capacity of only

seven return addresses and incurs an overhead of 5.9% in the number of logical cells

(LUTs) used on the FPGA. This limitation in size is due to the limited number of LUTs

and internal RAM of this inexpensive FPGA, as well as to the fact that Kôika does
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not provide a way to store data in the board’s block RAM. As could be expected, the

addition of a shadow stack has a moderate negative effect on the clock frequency as

well as the length of the critical path.

Section recap

In this section, we illustrated our proof methodology on a complex example. We

started with an existing RISC-V processor design and expanded it with a shadow

stack mechanism. We then specified some properties that our design was required

to enforce and proved that it indeed does enforce them. Although we successfully

proved our design correct, this came at the cost of significant work.

In the upcoming section, we discuss some changes we made to our framework,

extending it with automatic procedures to reduce the expenditure of human effort.

As we will see, we will be able to get rid of thousands of manually-written tactic

calls: instead of building proofs manually, we rephrase the properties we wish to

verify in a way that is suitable for SMT-solvers and we let these tools handle the

verification automatically.

4.3 SMT-based automation

This section describes how we extended our framework with automatic, SMT-based

procedures to make verification more accessible.

Section outline
In Subsection 4.3.1, we start by discussing our motivation for adding automatic

procedures to our framework alongside a brief overview of what this change

would require and entail. We turn to a description of the actual changes to our

framework in Subsection 4.3.2. Finally, we evaluate how our extended process

behaves in practice in Subsection 4.3.3. In particular, we verify the shadow stack

using the new process and compare this version with the previously established

baseline.
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4.3.1 Motivation and overview

The framework we built on top of Kôika provides a way of doing proof assistant-based

hardware verification. However, the process we described up to this point was rather

costly in terms of human effort. Although the proofs we presented were logically

simple, they were not easy to express in a viable way: performance was the main

limiting factor, but the overall verbosity did not help.

SMT-based procedures are an answer to both of these problems. Although SMT-

solvers have limitations, they can be helpful for the more significant part of the proofs in

which we may be interested. In an SMT-enriched proof process, the high-level structure

of the proof can still be done in Coq, and the simpler branches can be delegated to the

automatic procedure. This process would be a good fit for our hardware verification

process.

Hybridizing the proof assistant with an unverified external tool increases the size

of the TCB. There are ways of generating proof certificates from specific SMT-solvers.

Such certificates can be checked by the Coq kernel, eliminating the TCB imprint. We

have not gone this far in this work: we assume that the SMT-solvers are correct and

trust their results.

4.3.2 Conversion to SMT form

We must turn Coq propositions about Kôika designs into SMT queries to interface with

SMT-solvers. These forms differ quite starkly: Kôika is a high-level language (e.g., the

conditions for rules cancellation are implicit), whereas SMT queries expect everything

to be explicit. Luckily, we already tackled the problem of rendering a Kôika design

fully explicit — this is the essence of the conversion to IRR.

Therefore, the first step in generating appropriate SMT queries is to convert the

circuit to IRR form. IRR nodes are very close to what solvers take as input: they

are built out of basic operations (all of them well-supported by solvers; e.g., addition

or negation), conditionals, constants, and references to other nodes or registers (see

Figure 4.2).

Before describing the process in detail, let us consider a concrete example: assume

that we want to prove that the processor halts whenever there is an underflow (i.e., we

handle pops from an empty shadow stack correctly). SMT-solvers take an expression

containing free variables as input and are tasked with finding a valuation for these vari-

92



4.3. SMT-based automation

ables that makes this expression true. They answer “SAT” and show a concrete example

when they succeed, and “UNSAT” to express the fact that no satisfying valuation exists.

Remember that our design has a halt register, which is true if and only if the processor

halts on the current cycle. Therefore, we can feed the solver a query along the lines

of “there is a state of the processor where the shadow stack is empty and gets popped

from, yet the final value of halt is false” (i.e., there is a state where our conditions are

met yet the processor does not halt). Of course, assuming that underflows are detected

correctly, this cannot be satisfied — we expect the solver to answer with an “UNSAT”.

The IRR contains nodes representing every entity of interest in the system, such

as components, cancellation conditions or branch guards. We previously let on that

conversion of an IRR node to an SMT expression would be straightforward. This

process is, in fact, so cheap that we can register all IRR nodes of the design as named

expressions. References to registers in our query can be replaced with references to the

expression generated from the appropriate nodes of the IRR. Registers whose value

is not known are naturally represented as variables in the SMT formula, meaning that

the system will attempt to find values for these registers so as to satisfy the property.

Beyond this, the conversion process for propositions is manual. We already gave

an example of what this looks like in practice: in our underflow example, we kept our

preconditions and negated the conclusion. More generally, an implication 𝐴 ⇒ 𝐵 can

be modeled as ¬𝐴 ∨ 𝐵. We define aliases for implication and other constructs to make

the conversion more natural.

Coq provides an extraction mechanism that can be used to generate OCaml objects

from Coq code. We rely on this mechanism to get all the data relevant to our queries out

in the real world. We then use OCaml to generate an SMT-LIB source file [146], [147]

from the extracted data. These files can be handled by SMT solvers such as Z3 [148].

Figure 4.9 summarizes our SMT-based verification process. It shows that a user

can automatically go from a property about a Kôika design to one about an IRR. We

detailed the Kôika-to-IRR conversion previously. Since this conversion is verified,

we can trivially rephrase properties about Kôika designs as properties about their

corresponding IRRs. However, producing appropriate SMT queries remains the user’s

duty. As mentioned, the rest of the process is quite manual, although we provide a

Makefile that automates most of it. Note that we do not have a way of importing the

results of the solvers back into Coq — for the time being, the verification process is split

into a Coq part and an external part. In effect, we add the SMT-solver to the TCB.
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Kôika
design IRR

Property IRR
property

SMT query Extracted
SMT query

SMT-solver

Coq

Figure 4.9: SMT-based reasoning in Kôika
The gear icon ( ) indicates transitions that occur automatically

4.3.3 Experimental evaluation and comparison

4.3.3.a Replaying the same proofs

The most direct way of evaluating the efficiency of the hybrid Coq-SMT workflow is to

verify the correctness of the shadow stack a second time. We start by proving within

Coq that the queries we extract entail the statements we verify manually. We then pass

these queries to the solver.

The SMT-aided verification of the shadow stack took about 4.3 seconds on the same

processor as previously (for a speedup of about 150). Gains went beyond a reduction

of the time required by Coq to validate the proof. The process of writing the proof in

the first place was also made much swifter and smoother, with RAM usage never being

an issue.

The sources for this work can be found online
3
. Note that this version of the proof

relies on a primitive version of the process we describe in this section. In particular,

there is no user-friendly Makefile for directly verifying the proofs — instead, we relied

on a manual and risky copy-and-paste process. The modern version of the process is

used in the example presented in the following subsection.

3
https://gitlab.inria.fr/SUSHI-public/FMH/koika/-/tags/og smt proofs
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4.3.3.b Proofs on an extended processor

Throughout his two-month internship in the SUSHI team in the summer of 2024,

Gabriel Desfrenes successfully extended the processor with interruptions and exception

support. He also modified the shadow stack to make it emit an exception instead of

simply turning the whole processor off whenever an anomaly is encountered. The

solver handles this more complex example in around 40 seconds.

The sources for this work can also be found online
4
.

Section recap

In this section, we discussed how the processor we described, extended, and

verified in Section 4.2 can be used in the real world.

In the next section, we turn to the limitations of the system and perspectives for

its further development.

4.4 Limitations and perspectives

4.4.1 Limitations

4.4.1.a Sensitivity of the IRR

Some transformation passes such as ReplaceVar (see 4.5a) take identifiers of IRR variable

as arguments. Proofs using these passes are very sensitive to changes to the design

and tend to break even when changes occur in unrelated parts of the design. A way

around this problem would be to allow referring to variables through a more persistent

naming scheme. The workflow described in Section 4.3 is beneficial in this regard, as it

involves automatic tools that are not sensitive to names, reducing the need for manual

intervention.

4.4.1.b Kôika and memory

Kôika does not offer a way of using the block RAM of FPGAs. All the registers of a

Kôika design are stored in the usually much smaller LUTs. Currently, the only way of

storing registers in BRAM would be to build an interface relying on external calls, as

4
https://gitlab.inria.fr/SUSHI-public/FMH/herve
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was done for the data and instruction memory in the RISC-V example. However, this

makes reasoning about such registers harder.

4.4.1.c Configuration of the security mechanism

Our implementation of the shadow stack mechanism is hardcoded. Such an approach

means that parameters, such as the size of the shadows stack, cannot be adjusted at

runtime. Moreover, there is only one shadow stack. These choices ease the verifica-

tion of the mechanism and are consistent with the type of processor we use, which

corresponds to a microcontroller without privileged mode. Such a CPU often executes

a single application in an embedded device. An interesting extension would be to

provide some configuration mechanisms to adapt the mechanism at runtime. This

configuration mechanism must not be accessible to untrusted application code. Thus,

this requires considering a more complex CPU with privileged execution mode and OS

support. This evolution also poses the challenge of formal reasoning on the interaction

between hardware and some trusted code, i.e., OS kernel code.

4.4.1.d Handling of security property violations

Violations of the shadow stack result in the processor halting. This behavior is rather

abrupt, but it helped us validate our approach. A more adequate response would be

to emit a hardware exception that an operating system could handle at its discretion.

4.4.1.e Industrial applicability

The Kôika language is an academic language that has not yet seen industrial use. It

currently misses some essential features to be a viable option for this purpose, the most

critical among them being the support of reusable modules. For complex circuits, code

duplication leads to larger memory footprints and degraded performance. A module

system would also help with the proving process: the ability to define lemmas about

modules could lead to a natural way of compartmentalizing designs by decoupling

an implementation from its interface. Indeed, a lemma proven once about a module

would hold for any of its instances. With the right lemmas, looking at a module’s

implementation may not be necessary to reason about its behavior.
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4.4.2 Perspectives

4.4.2.a Functional verification

There is an official formal version of the RISC-V specification based on the Sail lan-

guage [149], which includes facilities to export definitions to Coq. Proving that our

processor design conforms to this specification would be a logical next step.

4.4.2.b Generalizing the processor design

Our target processor is relatively simple (unprivileged ISA, 32 bits, minimal extensions).

We could generalize our results by working with a family of processors instead of a

single concrete instance. Our proof should work the same way for any legal combination

of RISC-V extensions. We have progressed in generalizing the processor design by

generating a Kôika processor design from a list of RISC-V extensions. However, the

semantics of many new instructions are yet to be defined. Moreover, we were limited

in our implementation because only the unprivileged part of the specification had been

implemented. Adding support for the privileged part of the specification would open

possibilities for interacting with the operating system.

4.4.2.c Other security mechanisms

Another research direction would be considering more ambitious security mechanisms,

such as a more complex version of shadow stacks or capabilities. We would also like

to tackle security mechanisms requiring proper software configuration, e.g., the isola-

tion mechanism provided by OS kernels or hypervisors leveraging hardware features.

Such approaches require formalizing the interactions between software and hardware

components [92].

We managed to verify the properties we defined about the shadow stack entirely

within the SMT-solver. This is unfortunate, as it means that this example does not

illustrate the benefits of working within a proof assistant. Indeed, many classical

verification tools include no less powerful SMT-solvers and should therefore be able

to handle this example just as well. An ideal example would leave room for a proof

assistant to shine. The mechanisms mentioned in the previous paragraph may be

suitable for this purpose on account of their complexity.
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4.4.2.d Timing side-channels

Kôika’s cycle-accurate semantics makes it possible to reason about some timing side-

channels. Targeting mechanisms that enforce more complex policies, such as Informa-

tion Flow Tracking mechanisms, is more challenging. Indeed, such mechanisms are

supposed to guarantee some forms of non-interference, which correspond to predicates

on sets of traces, i.e., hyperproperties [150].

4.4.2.e Automatic procedures

The hybrid Coq-SMT workflow described in Section 4.3 has much better ergonomics

than the manual one. Nevertheless, it could still be improved.

The main weakness of this process is its TCB imprint: we blindly trust an unverified

tool. Pragmatically speaking, this problem is minor — this process is already as secure

as formal tools in use within the industry. Nonetheless, we could reduce the TCB

imprint by automatically generating proof terms and returning them to Coq. The

whole process would be up to Coq’s security standards.

Integrating the SMT-based procedure leaves room for improvement. We have to

extract code and run commands manually outside of Coq. Ideally, we should never

have to step out of the Coq environment. A tactic providing access to SMT-solvers and

handling proof certificates would solve our TCB concerns and the cumbersomeness of

the process.

Additionally, it should be possible to automatically handle the conversion from a

subset of Coq propositions to SMT queries (this would have to happen outside of Coq,

although this may be made transparent to the user). With our current approach, the

user manually does most of the conversion work in Coq. Queries are defined using

some syntactical constructs defined in the assistant. In addition to being unwieldy, this

conveys some risks: this manual conversion process may go wrong. This risk can be

mitigated by proving that the query implies the original proposition, as described in

Subsection 4.3.3.a, but this comes at the cost of even more manual labor.

SMTCoq [151] is a third-party project whose aim is to provide a clean interface

between Coq and SMT-solvers. Alas, Kôika manipulates bitvectors, and SMTCoq’s

support for bitvectors is insufficient: only some very trivial queries are handled suc-

cessfully.
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4.5 Conclusion

This chapter proposes a methodology for building synthesizable hardware with for-

mally verified security mechanisms. We base our work on the Kôika formal HDL,

which we modify in depth to make it practical for reasoning on hardware designs.

We implement a verified compiler from Kôika designs to a lower-level, more explicit

representation, which is more amenable to proving. In addition, we define a set of

verified transformation passes on these low-level representations that can be applied

to simplify objects in this representation, as needed for each proof.

We then apply our methodology to implement a verified shadow stack for a simple

pipelined RISC-V processor. Notably, we show that detecting the overwrite of a return

address results in the halting of the processor. This result is further confirmed by

simulating the processor and running a simple example code performing a buffer

overflow, which is indeed detected by our shadow stack.

We also present an extension of this methodology relying on an automatic, SMT-

based procedure. This extension significantly lowers the human effort required for

formal verification. On the downside, the procedure relies on an unverified external

solver.

While the security mechanism verified here is relatively simple, it forms the foun-

dation for possible future work and exemplifies how more complex mechanisms could

be tackled.
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Chapter 5

COQQTL

In Chapter 4, we described how we adapted the Kôika language to make it more

amenable to proofs. However, this language was an academic one and had yet to be

used in the industry; in fact, it lacked essential features to make it a realistic choice for

this purpose (such as proper support of modules and instances, making the language

inherently non-modular).

In this chapter, we describe COQQTL, our Coq implementation of FIRRTL . This

latter language is an intermediate representation used by Chisel, a modern HDL that

is used in academia [152] as well as in the industry [153]. Our intention is to enable the

verification of Chisel designs (after their compilation to FIRRTL) without disturbing

the classical Chisel workflow, as shown in Figure 5.1. Alternatively, COQQTL designs

can be defined within Coq and only later exported to FIRRTL.

We describe how we generate an IRR from COQQTL designs as we did for Kôika

ones. This is a first step towards building a framework for the formal verification of

COQQTL designs in the line of our previous work.

Chapter outline

This chapter is structured as follows. Section 5.1 introduces COQQTL, our Coq

implementation of FIRRTL, alongside its semantics. In Section 5.2, we describe

how we compile COQQTL code to a form more amenable to formal reasoning —

almost the same as the IRR we implemented in Kôika. We discuss limitations and

future work in Section 5.3. Section 5.4 closes this chapter.

5.1 The COQQTL language

COQQTL (pronounced [kOkt@l]) is an implementation of the FIRRTL language em-

bedded within the Coq proof assistant. It is based on version 3.2.0 of the language [154]

In this section, we describe the syntax and semantics of this language.
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Chisel
e.g. a SiFive chip lower-level

Coq formalization
of FIRRTL

Bitstream
for synthesis

compilation

(unverified)

transpilation

verification
compilation (LLVM Circt)

Figure 5.1: The COQQTL
hardware development pipeline

Section outline
We begin with an overview of the original language and our port in Subsec-

tion 5.1.1. COQQTL’s syntax and semantics are introduced in Subsection 5.1.2.

Subsection 5.1.3 discusses how COQQTL designs are interpreted directly within

Coq.

5.1.1 Overview

FIRRTL (Flexible Intermediate Representation for Register-Transfer Level) originated

as an Intermediate Representation (IR) for Chisel, an open-source HDL embedded

within Scala (which “adds hardware construction primitives to the Scala programming

language, providing designers with the power of a modern programming language

to write complex, parameterizable circuit generators that produce synthesizable Ver-

ilog”
1
). Nowadays, it is less tied to Chisel. Indeed, it is used as an IR by the LLVM

CIRCT (Circuit IR Compilers and Tools) compiler, an (unverified) hardware compiler

built following the LLVM methodology [18].

COQQTL can be used by importing FIRRTL code obtained by compiling designs

written in languages supported by CIRCT (such as Chisel) or even directly as a low-level

HDL. Indeed, although FIRRTL originates as an IR, it is also a full, human-readable

HDL in its own right. Furthermore, as COQQTL is embedded within Coq, we can

define higher-level constructs using the facilities provided by this system. Going back

to the abstraction level of Chisel would mostly be a matter of designing a hardware

1
https://github.com/chipsalliance/chisel/blob/v6.0.0/README.md
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Bitvector 𝑏𝑣.

Types 𝑡 ::= UInt 𝑛 | SInt 𝑛 | Clock | AsyncReset
| Vector sz 𝑡 | Bundle {(name, t, flipped)field∗}
| Enum {(name, 𝑡)variant∗}
| Const 𝑡.

Values val ::= (𝑏𝑣, 𝑡).

Figure 5.2: Syntax of COQQTL values

design library on top of COQQTL (just like FIRRTL code roughly corresponds to what

is left after the Scala portion of a Chisel design has been fully evaluated).

We implement the core features of the FIRRTL language, including its rich type

system and its intricate semantics. They are presented in the rest of this chapter. It

should be noted that our support for modules is only partial as of this writing
2
.

We declare features that are not critical for our purposes to be out of scope, although

there is no major obstacle to their implementation. Some of these features provide ways

of doing a limited form of verification — our approach mostly supersedes them.

5.1.2 Syntax and semantics

This section focuses on the syntax and semantics of COQQTL, which aligns closely

with the FIRRTL specification, version 3.2.0 [154]. We outline COQQTL’s type system,

the components it introduces, and its definition of circuits and expressions, providing

a comprehensive overview of the language’s structure and meaning.

5.1.2.a Types and values

COQQTL is a typed language. Its type system, described in Figure 5.2, is rather

expansive, including both simple and aggregate types. It defines signed and unsigned

integers (SInt and UInt), clocks (Clock), reset signals (AsyncReset), as well as fixed size

arrays (Vector, parameterized by a type and a size), structures (Bundle, parameterized

2
In effect, we support single modules only, although everything that we implemented up to this

point is required for and compatible with modules. What is missing for going from single modules

to multiple modules is more implementation time. In fact, we already implemented several modules-

related mechanisms, e.g., for detecting that instances are not used in a way that leads to dependency

loops.
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Expressions 𝑒 :=

| uconst−→bv | sconst−→bv
| enum 𝑡 name_tag value
| ref 𝑟 | sfield value subfield
| sindex value 𝑛 | saccess value 𝑒
| as_uint 𝑒 | as_sint 𝑒
| as_clock 𝑒 | as_async_reset 𝑒
| shl 𝑛 𝑒 | shr 𝑛 𝑒
| andr 𝑒 | orr 𝑒 | xorr 𝑒
| bits hi lo | head 𝑛 𝑒 | tail 𝑛 𝑒
| pad 𝑛 𝑒 | cvt 𝑒 | neg 𝑒 | not 𝑒
| add 𝑒1 𝑒2 | sub 𝑒1 𝑒2 | mul 𝑒1 𝑒2
| div 𝑒1 𝑒2 | rem 𝑒1 𝑒2
| eq 𝑒1 𝑒2 | neq 𝑒1 𝑒2 | lt 𝑒1 𝑒2
| leq 𝑒1 𝑒2 | gt 𝑒1 𝑒2 | geq 𝑒1 𝑒2
| and 𝑒1 𝑒2 | or 𝑒1 𝑒2 | xor 𝑒1 𝑒2
| dshl 𝑒1 𝑒2 | dshr 𝑒1 𝑒2 | cat 𝑒1 𝑒2
| mux 𝑒sel 𝑒1 𝑒2.

Statements 𝑠 ::=

| wirename 𝑡 | nodename 𝑒
| registername 𝑡 𝑒clk
| register_resetname 𝑡 𝑒reset 𝑒v_init 𝑒clk
| memoryname mem_info
| instancename module_name
| when 𝑒cond 𝑠then 𝑠else
| match 𝑒 {(namevariant, ?namebinder, 𝑠)branch∗}
| seq 𝑠1 𝑠2 | skip
| stop 𝑒clock 𝑒cond 𝑛 ?name
| connect 𝑒to 𝑒from | invalidate 𝑒.

Port_direction 𝑑 ::= input | output.
Ports 𝑝 ::= {(name, 𝑑, 𝑡)port∗}.

Module 𝑚 ::= name × ports × statement.
Circuit 𝑐 ::= {𝑚∗} × toplevel_module_name.

Figure 5.3: Syntax of COQQTL circuits

104



5.1. The COQQTL language

by a list of fields with a certain name, type and flippedness — we will get back to the

role of flippedness when discussing modules and their interfaces) and unions (Enum,

parameterized by a list of variants with a certain name and type). This rich type system

makes it possible to write expressive COQQTL code despite the language’s lack of

high-level constructs. Furthermore, types (of components or subcomponents, such as

that of a specific field in a bundle) may be declared constant (Const). A COQQTL value

is nothing more than a bitvector tagged with a type.

5.1.2.b Syntax of circuits and modules

The syntax of the COQQTL language is described in Figure 5.3. A COQQTL circuit

contains a set of modules. Modules are design bricks that are described only once but

can be instantiated multiple times in a design — this is an essential part of what makes

the language modular. One of the modules is marked as the toplevel: simulating or

emitting a bitstream for the circuit is the same as simulating or emitting a bitstream for

this module. The other ones are included implicitly as direct or indirect dependencies

of this main module. Indeed, modules may contain instances of other modules. Three

elements characterize a module:

• A name;

• A list of input and output ports (particular components that represent the interface

of the module);

• A statement, characterizing its behavior.

The name and the input/output ports can be seen as the module’s public interface.

Everything else is contained in the module’s statement, whose role is chiefly confined

to describing two elements:

• The components that make up the module in addition to its ports;

• The connections between components/ports or constants: where they exist, un-

der which conditions they are used, etc. These connections provide a way of

computing the effects of input changes on both the outputs and the internal state

of the module.

5.1.2.c Components, flow and connections

A COQQTL module contains various types of components. We already mentioned its

ports while talking about its interface. These are components that represent communi-
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Flow 𝑓 ::=

| source
| sink
| duplex.

flip_flow( 𝑓 ) :

sink if 𝑓 = source

source if 𝑓 = sink

duplex if 𝑓 = duplex

Components comp ::=

| Input name 𝑡 | Node name 𝑒
| Memory name mem_info
| Instance name module_name
| Output name 𝑡 | Wire name 𝑡
| Register name 𝑡 𝑒clk
| Register_reset name 𝑡 𝑒reset 𝑒v_init 𝑒clk.

get_flow_comp(comp) :


if comp = Input _ _ ∨ comp = Node _ _source ∨ comp = Memory _ _ ∨ comp = Instance _ _

if comp = Output _ _ ∨ comp = Wire _ _
duplex ∨ comp = Register _ _ _

∨ comp = Register_reset _ _ _ _ _

get_flow(e) :



get_flow_comp(get_comp(r)) if 𝑒 = ref 𝑟

if 𝑒 = sindex value _get_flow(value) or 𝑒 = saccess value _

flow𝑣 := get_flow(value)
𝑡𝑣 := get_type(value)
if is_field_flipped(𝑡𝑣 , field) if 𝑒 = sfield value field
then flip_flow( 𝑓 )
else 𝑓

source otherwise

Figure 5.4: Syntax of COQQTL components
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cation channels between the module and its environment. Ports come in two variants

depending on their flow, the flow being the notion that characterizes whether a com-

ponent can be read from (source), written to (sink), or both (duplex). Input ports are

source, whereas Output ports are duplex (sinks are more complex, as we will see).

Components other than ports are introduced in a module’s statement. For instance,

a Register (duplex) is a stateful component that can store data between the ticks of

the clock signal which drives it (the 𝑒𝑐𝑙𝑘 expression is expected to have type Clock). A

Register_reset is a variant of this component, which is reset to some default value

whenever some signal is received — this reset signal must either have type UInt<1>

or AsyncReset, depending on whether resets should run in sync with the Register’s

clock signal or not. On the other hand, a Wire (duplex) is a combinatorial component,

which merely binds a value to a name and is unable to store state. A Node (source) is

a combinatorial component that represents a named expression. As such, writing to

it after it has been initialized is impossible. Finally, an Instance (source) represents a

concrete instantiation of a submodule, and a Memory (source) is used for storing large

amounts of data (the data is not directly accessible — instead, this component gives us

an interface for storing data on a nondescript memory).

Components are named, and distinct components may share the same name. In

scopes where several components sharing the same name are accessible, the one defined

most recently shadows all the older ones.

The ref expression is used to access components by name. There are also ex-

pressions (sfield, sindex, saccess) for accessing subcomponents. For instance,

sfield (ref "c") "f" means that we want to access field f of the component cor-

responding to c in the current scope. For this expression to be valid, a component c

must be in-scope, and we need to check its type. Indeed, all components are associated

with a type. For most components, this type is given explicitly. For instance, the value

associated with a Wire defined as wire w: UInt<8> will be of type UInt<8>.

Going back to our example where we wanted to access field f of component c, we

need to ensure that the type of the value associated with the c component is a Bundle

with a field called f. The expression then returns the value of this field. If the type of

component c is something other than a Bundle with a c field, then this expression is

invalid.

Sometimes, the type of the value associated with a component does not appear in

its declaration. For instance, COQQTL synthesizes a value of type Bundle for com-
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circuit c:
module m:

input in : UInt <8>
output out: UInt <8>

out <= add(in, UInt <8 >(1))

Figure 5.5: Listing — increment input

circuit c:
module m:

input in : UInt <8>
output out: UInt <8>

in <= add(out , UInt <8 >(1))

Figure 5.6: Listing — flow error

ponents of class Instance and Memory. This Bundle represents their interface, as the

FIRRTL specification describes. A Bundle associated with an Instance contains all of

the Instance’s ports. Of course, input and output ports cannot be treated uniformly.

Critically, input ports can only be read from — this is where flippedness comes into

play. A flipped field has a flow opposite to that of the Bundle that contains it. Since

input ports of Instances should have sink flow, the corresponding fields in the Bundle

are flipped. Similarly, the type of the value obtained when accessing a Memory is a

Bundle representing an interface to the actual component (for instance, it contains a

field for each read port that the memory offers).

The notion of flow is used only by the connect statement. This statement connects 𝑒to

to 𝑒from. There are constraints on the flow of these two expressions. 𝑒to should be writable

(sink or duplex) and 𝑒from should be readable (source or duplex). The get_flow function

provides a way of associating a flow to expressions. Most expressions are assigned the

source flow. Only expressions accessing components or subparts of objects of complex

types may have a different flow. In particular, a connect cannot take a mux as its

left-hand-side expression.

Figure 5.5 is our first concrete example of a COQQTL circuit. The <= symbol is

syntactic sugar for the connect statement. In this example, we introduce a circuit c

composed of a single module named m. This module has two ports: an input port

called in, and an output port called out. Both ports share the same type, namely

UInt<8>. This module takes the value it received in in, increments it, and outputs the

result to out.

Figure 5.6 is almost the same, except that the occurrences of in and out are swapped

in the statement. This trivial change is enough to make the circuit invalid. Indeed,

the flow of in is source, and that of out is duplex. Although building the value

add(out, UInt<64>(1)) is valid, resulting in a value of flow source (like most expres-

sions), connecting this value to in is disallowed — in has flow source, and sources are
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invalid target for writes.

For the sake of readability, later examples only show the definition of the ports and

statement when a single module is used, skipping the circuit and module declaration.

The language supports both combinatorial and sequential assignments. Unlike

other languages, this is done through a single construct: the connect statement.

Whether an assignment is blocking or nonblocking depends solely on the compo-

nent it targets: for instance, assignments to a Register are nonblocking, whereas those

to a combinatorial component such as a Wire are blocking. Therefore, FIRRTL only

requires one form of assignment.

5.1.2.d Expressions

Not all syntactically valid definitions are semantically valid. For instance, we already

mentioned how Registers expect Clock typed arguments. Similarly, not all expressions

support all types of arguments. Most expressions only handle integer arguments

(e.g., most numerical operations such as add accept either two UInts or two SInts).

Furthermore, the type of expressions is unambiguous (assuming two inputs of type

UInt/SInt 𝑤1 and UInt/SInt 𝑤2, add always returns an UInt/SInt max(𝑤1, 𝑤2) + 1).

The syntax of expressions is given in Figure 5.3. They can be classified into five

broad categories:

• Constant definitions, such as uconst or enum. These expressions make it possible

to introduce a new value out of nowhere. Note that there is no way of generating

a Bundle or a Vector this way — the only way of getting an element of these types

is by accessing appropriately typed components.

• References and subaccesses, such as ref or sindex. These expressions allow us to

access components in scope (with ref) and to focus on some precise part of their

value when their types allow it (with sindex and saccess for accessing Vector

items, and sfield for accessing Bundles).

• Conversion operations, such as as_uint or as_clock, to obtain a value of some

from a value of a different type. These work only with UInts/SInts.

• Numeric operations, such as add or and, to generate values by combining other

ones.

• The mux statement, an outlier. Its first argument, 𝑒sel, must be a UInt<1>, and its

other two arguments, 𝑒1 and 𝑒2 should share the same type. The value of the first

expression determines to which of these two values the expression evaluates.
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5.1.2.e Components initialization

There are other conditions that a COQQTL circuit has to respect. For instance, the value

associated with each component has to be clearly defined. Four different mechanisms

influence this definition:

• explicit connect;

• explicit invalidate;

• implicit conservation of the previous value (stateful components only);

• implicit resetting (Register_reset only).

The first occurs whenever a connect statement is used. In this situation, the

(sub)component that is the target of a connect statement gets its value set to the value

of the expression specified in the statement.

Alternatively, a (sub)component may be the target of an invalidate statement. This

statement can be viewed as a connect to an unspecified value of the appropriate type.

The compiler can pick any concrete value for this as long as it is used coherently.

Finally, by default, the value of stateful components (such as Registers) is preserved

from one cycle to the next. Running a connect statement connected to a Register is

not bound to affect the Register. Indeed, Registers and Register_resets take an 𝑒clk

argument. The value of the Register can be updated through a connect only on a rising

edge of the clock.

Depending on how the Register_reset is defined (and in particular on the type of

its 𝑒reset argument, which is either UInt<1> or AsyncReset), the reset may or may not

need to wait for a rising edge of the register’s clock to take effect. In any case, the reset

takes precedence over the conservation of the Register_reset’s default value.

5.1.2.f Absence of loops

Valid COQQTL designs are exempt from loops. For instance, it is forbidden to bind a

wire to itself (although it is possible to bind a register to itself, due to the non-blocking

nature of assignments to registers: the new value of the register from the next clock

cycle on would then be defined to the one it already held). This is a problem that

can be found in other languages as well. For instance, the synchronous language

Esterel forbids programs that require an unbounded amount of computation in a tick,

as described by Potop-Butucaru et al. [155].

The checks are fine-grained, making it, for instance, possible to bind the second
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input in: UInt <8>[3]
wire w: UInt <8>[3]
w <= in
w[2] <= w[1]

Figure 5.7: Listing — cycle-free
module

input in: UInt <8>[3]
wire w: UInt <8>[3]
w <= in
w[2] <= w[1]
w[1] <= w[2]

Figure 5.8: Listing — module
with cycle

input in: UInt <8>[3]
wire w: UInt <8>[3]
w <= in
w[2] <= w[1]
w[1] <= w[2]
w[2] <= w[0]

Figure 5.9: Listing — cycle-free
module

element of a vector-typed wire to the third element of the same vector (Figure 5.7; note

that the v[x] notation is syntactic sugar for the vector access expression). However,

adding a further connection from the third element to the second one leads to a cycle,

and the compiler thus rejects the design (Figure 5.8).

Figure 5.9 shows that, perhaps surprisingly, adding a specific connection at the end

of this incorrect design can make it correct again. This behavior is because the third

connection overrides the first one, removing the cycle. In COQQTL, later connections

take precedence over earlier ones. This behavior makes specializing connections easy.

For instance, we may want to connect two registers v1 and v2 corresponding to matching

vectors of size 10 through v1 <= v2, before overwriting the connection of the 5
𝑡ℎ

item

only in a subsequent connection v1[4] <= x. The entirety of the mechanisms involved

in the handling of this case are introduced throughout this chapter.

Connections between (sub)components may be depicted graphically. In Figure 5.10,

we show what this looks like for Figure 5.7, Figure 5.8 and Figure 5.9. The in component

is an input port, so its value is always known at the start. We mark such given values

with a symbol. Then, we split in into its subcomponents (in[0], in[1] and in[2]).

These elements only depend on the value of in. We represent such dependencies using

an arrow ( ). We also split the w component into its constituents (w[0], w[1] and

w[2]). Of course, the final value of component w depends on all 3 of its subcomponents.

We also represent the dependencies introduced by connections. For instance, the first

connection in all three statements is w <= in: w[0] takes the value of in[0], w[1]

takes the value of in[1] and w[2] takes the value of in[2]. In all three examples, the

next connection is then w[2] <= w[1]. This connection overrides the first one as far

as w[2] is concerned. Overridden dependencies are represented with a dotted, gray

arrow ( ). Seeing whether there is a loop in the statement is merely a matter of

checking whether there are cycles in the graph (not taking dotted arrows into account).
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Figure 5.10: Connections graphs
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Figure 5.11: Compact connection graphs

Dependency arrows that are parts of cycles are represented in a different color ( ).

Nodes representing components whose value needs to be determined are represented

with a double circle ( ).

The systematic splitting of all components is not strictly necessary. More compact

representations of the acyclic connection graphs presented in Figure 5.10c are given

in Figure 5.11. Although both graphs presented are equivalent to those from the

previous figure, the second representation is much more compact: all dependencies

of the component w are there. Ultimately, all the information required to compute the

values that need to be determined comes from the values given at the start (this should

not be surprising).
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input which: UInt <1>
input v0: UInt <8>
input v1: UInt <8>
output out: UInt <8>

when which:
out <= v0

else:
out <= v1

Figure 5.12: Listing — conditional connections

input in : UInt <8>
output out: UInt <8>

when UInt <1 >(1):
out <= in

else:
skip

Figure 5.13: Listing — initialization issue

Note that this kind of graph can show the presence or the absence of loops, but it is

inadequate for ensuring that a component’s value is explicitly given. Indeed, as we shall

now see, connections may be conditional. A (non-overwritten) conditional connection

adds dependencies to the (sub)component on its left-hand side, yet it does not by itself

guarantee that the (sub)component is indeed always initialized: the condition guarding

the connect may be false.

5.1.2.g Conditions, aggregate components and component initialization

The examples presented thus far were simplistic in that they always involved direct

connections between components. However, any (correctly typed) expression may

appear on the right-hand side of a connect statement. In particular, a connection may

introduce dependencies to several components.

The whole story of component initialization is more complex than we initially let

on. Two important notions need to be discussed in more detail:

• Conditions may guard some connections;

• Components of aggregate types may be initialized one piece at a time.

Figure 5.12 and Figure 5.13 illustrate how conditional connections impact compo-

nents initialization and loop detection.

Figure 5.12 shows two conditional assignments (we introduce some syntactic sugar

for the when statement). The first assignment appears in the first branch of the when,

and the other appears in the alternative branch. This example is correct: the value of

out is defined no matter which branch is taken (and out is the only value we need to

define).

To a first approximation, the criterion for rejecting a circuit is the existence of at least
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input in : UInt <32 >[3]
input x : UInt <32>
output out: UInt <32 >[3]
out <= in
out[2] <= x

Figure 5.14: Listing — aggregates connection

input in1: UInt <32>
input in2: UInt <32>
output out: UInt <32 >[3]
out[0] <= in1
out[1] <= in2

Figure 5.15: Listing — piecewise connections

one state of the circuit and its inputs such that the value of at least one subcomponent

is undetermined.

However, Figure 5.13 is rejected by the COQQTL compiler. Indeed, the second

branch of the when statement does not explicitly define a value for out. The sec-

ond branch should never run in practice: the 𝑒cond argument of the when is literally

UInt<1>(1). However, the compiler does not analyze condition expressions, viewing

these parts of condition statements as opaque. Therefore, the system cannot guarantee

that a value is assigned to out in all situations, and the module must be rejected.

The actual criterion is that the value of all components should be defined no mat-

ter which branches of conditionals are taken. Therefore, the only components that

conditional statements initialize are those in the intersection of the set of components

initialized by each branch.

The second notion that needs more explanation is the initialization of components

of aggregate type. Indeed, these components can be initialized in multiple, possibly

overlapping steps.

Figure 5.14 and Figure 5.15 illustrate how aggregate components are handled from

the standpoint of component initialization validation and loop detection.

Figure 5.14 shows how an aggregate type can be defined from another. This example

is correct: all parts of the component are initialized. Note that out[2] is connected twice:

first through the out <= in statement, and then through the out[2] <= x one. As we

already discussed, the latter initialization takes precedence over the former.

On the other hand, the example presented in Figure 5.15 has to be rejected. There, the

out component is initialized piecewise, with the values of its first and second elements

explicitly defined. However, the value of its third and last element is left undefined.

Adding an (unguarded) connection to this third item would make this definition legal.

Note that the components appearing in the condition expression must be added

as dependencies for all the connections under it. Figure 5.16 shows an example of a

module rejected due to a condition-induced loop.
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output out: UInt <1>

wire w: UInt <1>
when w:

w <= UInt <1>(0)
else:

w <= UInt <1>(1)
out <= w

Figure 5.16: Listing — condition induced loop

v0 which v1

outout

(a) for Figure 5.12

ww outout

(b) for Figure 5.16

Figure 5.17: Dependencies graphs for examples involving conditions

In Figure 5.17, we give the dependencies graphs of two recent examples, which

included conditions. Of particular interest is Subfigure 5.17b, which makes the issue

Figure 5.16 immediately visible.

All in all, there are only a few expressions for accessing subcomponents, namely:

• the sfield expression, used for accessing fields of Bundle typed elements;

• the sindex expression, used for accessing the nth item of a Vector typed element,

where n is an integer;
• the saccess expression, used for accessing the nth item of a Vector typed element,

where n is an expression.

As to conditional constructs, there are:

• the when statement, as illustrated in Figures 5.12 and 5.13;

• the match statement, used for pattern matching on values of Enum type;

• perhaps more surprisingly, the saccess expression.

The saccess expressions are in both categories, as they act as a subcomponent

accessor and a conditional. Indeed, this is the subcomponent accessor that returns the

𝑒th
subcomponent of a Vector typed element (such an element must necessarily be a
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component — there is no way of defining a literal Vector, for instance). Resolving the

expression 𝑒 is not straightforward. For the same reasons why we do not analyze the

expression of whens, we do not analyze the expressions of saccesses (the only thing

we know about it is that it is well-typed). We cannot even guarantee that the index it

resolves to is within bounds. When the value of saccess is read, it returns the value

of the designated element when it is within bounds, and it may return any well-typed

value when it is out of bounds.

On the other hand, when it sits on the left-hand side of a connect statement, it turns

into a conditional assignment: if the expression resolves to 0, then the assignment

concerns the first item of the Vector, if it is 2, then it concerns the second item, and

so on for all in-bounds indices. If the expression resolves to an out-of-bounds index,

no connection occurs. Therefore, connections to saccesses always add dependencies

to all the elements of the Vector, yet they can never be guaranteed to define the value

of any concrete subelement (they may always be out-of-bounds; remember that we do

not analyze the expression).

Additionally, saccesses may appear outside of the final position in statements. Con-

sider for instance c[e].b and d[e][e'][2]. In these examples, [e] and [e'] represent

saccesses. All of these are followed by additional elements. Assuming that the type of

c is:

Vector(Bundle([("a", UInt<8>); ("b", UInt<5>)]), 3)

And that of d is:

Vector(Vector(Vector(UInt<8>, 8), 3), 2)

The ids matched by the first expression are c[0].b, c[1].b and c[2].b. Those matched

by the second expression are more numerous:

d[0][0][2] d[0][1][2] d[0][2][2]

d[1][0][2] d[1][1][2] d[1][2][2]

The interplay of these factors makes checking that there are no components with

undefined values and no dependencies loops rather complex.

5.1.2.h Multiple clocks

An essential difference between Kôika and COQQTL is that the latter language does

not have a clear notion of ticks. In Kôika, the semantics used a notion of cycles based
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circuit c:
module aux:

input in : UInt <8>
output out: UInt <8>
out <= in

module main:
instance m of aux
wire w: UInt <8>
m.in <= w
w <= m.out

Figure 5.18: Listing — loop with in-
stance

ww

out

in

Figure 5.19: Connections in Figure 5.18

on an implicit clock that drove the entire circuit. In contrast, in COQQTL, the state is

updated based on input variations. COQQTL, therefore, supports multiple clocks, and

it is up to the user to ensure that clock domains are crossed safely.

In COQQTL, the Clock type simply represents one bit of data. The clock itself is not

modelled directly in COQQTL. Instead, Clock typed ports of the toplevel module may

be driven from the environment. It is possible to build derived clocks: the language

provides an as_clock function, which casts any object of a simple type into a clock.

5.1.2.i Modules

Functionally speaking, instances of modules are inlined in the modules that include

them. They are viewed as bundles, with a flipped field for each output and a non-flipped

field for each input. This abstracted view ensures that interface and implementation

are kept distinct. In particular, internal components cannot be accessed directly.

Module instances may be part of connection loops. Consider, for instance, Fig-

ure 5.18. There, module aux has two ports: an input port in and an output port out.

Furthermore, the output port value is continuously set to that of the input port. Then

comes the main module, in which the aux module is instantiated as m. This module con-

tains a loop: wire w is driven by m.out while also driving m.in. Figure 5.19 illustrates

this cycle more clearly.

The public interface of a module consists of a name and a list of inputs and outputs.

We expand this interface with dependencies relating the module’s inputs to its outputs

to enable tracking connection loops in modules without breaking encapsulation. This
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dependency information is automatically derived from a module’s description and then

used whenever the module gets instantiated. Of course, the module itself is checked

for internal loops at the point where it is defined.

5.1.3 Interpreting circuits

Having the current value of inputs is not enough to evaluate a module’s new state. In-

deed, registers are updated on the rising edge of their associated clock — i.e., when their

previous value was low and is now high. The previous state needs to be remembered

for edge detection.

COQQTL supports derived clocks — i.e., clocks can be built dynamically from

arbitrary data through the as_clock function, which can convert data of any simple

type to Clock type. This feature makes it easy to define clock dividers and clock signals

with, e.g., half the ticking rate of input. As derived clocks may be based on any input,

remembering the previous state of the Clock-typed inputs is insufficient.

More generally, having information regarding the previous state of the inputs is

helpful for performance: not all inputs impact all outputs. Knowing which inputs

changed helps limit computations for obtaining the new state.

Note that COQQTL’s semantics is not deterministic. In situations involving the

invalidate statement, the interpreter is given free reins in picking a value. In particular,

it may choose to always set invalidated components to zero. Compilers may instead

choose values in such a way as to simplify the implementation, for instance by replacing

an invalidate guarded by a when with an assignment corresponding to the one in the

other branch.

Section recap

This section presented COQTTL, our Coq port of the FIRRTL HDL. We took the

time to introduce its syntax and semantics and how it can be interpreted directly

within Coq. In the next section, we turn to reasoning on COQQTL circuits. We

build an IRR that follows the same principles we used when dealing with Kôika

designs.
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5.2 The COQQTL IRR

In this section, we introduce our Intermediate Representation for Reasoning for CO-

QQTL. As indicated by its name, this representation is meant to prove things about

COQQTL designs. It is similar to the IRR we introduced for reasoning about Kôika

designs in Section 4.1.2.

Section outline
We start by justifying our use of IRRs in this different context in Subsection 5.2.1:

we want to shift our focus further in the direction of automation (and SMT-based

proving in particular) and the relevance of IRR in this setting is not immediately

apparent. We then talk about the structure of the IRR in Subsection 5.2.2. Finally,

we describe how the conversion to IRR is handled in practice in Subsection 5.2.3.

5.2.1 Why an IRR for COQQTL?

We mentioned how we intend to build an interface for automated solvers to make

verification more accessible and efficient. In particular, we mentioned SMT-solvers.

Most properties are expressed in terms of components and their values. For instance,

we may want to show that the value of register 𝑟 never drops below 2, assuming the

input 𝑖 was always positive. Although converting expressions to an SMT-compatible

form is easy, generating a formula for the state of entire COQQTL components is

more complex. This state not only depends on expressions on the right-hand side of

connection statements but also on the conditions that guard these statements and the

precise subcomponents that they target, the fact that later connections can override

earlier ones, etc. In addition, some high-level features need to be simplified. For

example, COQQTL components are referred to by name. We must check which in-

scope component was last defined to solve the reference. These concerns are too

high-level for SMT-solvers and must be handled upstream.

All in all, we want to turn a high-level representation into a low-level, explicit one.

This situation is reminiscent of the one described in Chapter 4: we had a high-level

language with a complex semantics, leading to performance issues when doing proofs

manually in Coq. To make reasoning on Kôika circuits tractable, we converted them to

a low-level explicit form. A representation like the one we introduced for reasoning in

Kôika fits the bill.
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circuit c:
module m:

input in1: UInt <8>
input in2: UInt <8>
output out: UInt <8>

wire w1: UInt <8>
wire w2: UInt <8>
w1 <= add(in1 , in2)
when lt(in1 , in2):

w2 <= sub(in2 , in1)
else:

w2 <= sub(in1 , in2)
out <= mod(w1, w2)

in1*
in1

in2*
in2

in1 + in2
w1

in1 <? in2
cond

in2 - in1
w2a

in1 - in2
w2b

if cond then w2a else w2b
w2

w1%w2
out*

Figure 5.20: Example module and its associated IRR

5.2.2 The IRR format

Like our Kôika IRR, our COQQTL IRR is based on an ordered set of nodes. The

nodes in the IRR are built out of three ingredients:

• expressions: these mostly correspond to COQQTL expressions;

• conditionals: some (sub)components may be conditionals;

• references: nodes can refer to each other, with the proviso that a node may only

refer to nodes smaller than it — this guarantees that there are no loops in the

structure and makes sharing possible (which helps with keeping memory usage

in checks).

Despite the many similarities, two crucial differences exist between the Kôika IRR

and its COQQTL counterpart.

First, there are differences between Kôika and COQQTL related to the way in which

they are updated. These differences are reflected in the IRR. Kôika assumes that there

is a single clock controling the entire system. All registers are updated unconditionally

on every cycle. Furthermore, it includes notions such as that of ports: we introduce

nodes in the IRR that correspond to values that registers transiently hold during a

cycle. In contrast, COQQTL does not have a notion of cycles, as designs are evaluated

in an event-driven way: we update their state based on changes in the toplevel inputs.

Clocks are not modeled inside of COQQTL. Instead, the toplevel module may take
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clock-typed signals as input
3
. Registers updates are tied to specific clock-typed signals,

which we need to consider when building the corresponding IRR nodes.

The second difference between the two IRRs is related to the type systems of both

languages and, more specifically, the handling of aggregate types in COQQTL. Indeed,

when considering such a COQQTL object, we need a high level of granularity: this is

because connections may be of the form v[5] <= in, only updating part of the fuller

component. We can refer to whole components as well as to subsets of them. When

referring to, e.g., v, we want to see the value of all of its subcomponents, including v[5].

We, therefore, need to add constructs for building or updating aggregate values based

on simpler values. For instance, we have an expression that takes a list of 𝑛 values

of type t and returns a vector composed of those values. We also have a construct

for updating single values of Vectors and single fields of Bundles: that way, we could

describe v as update_index(v', 5, in).

Outside of these changes, the IRR we end up with is essentially the same as the one

we described in the previous chapter.

Figure 5.20 showcases an example of a simple COQQTL circuit and its associated

IRR. This circuit contains a single module with two inputs (in1 and in2) and one

output (out), which is set to (in1 + in2)%|in1 − in2|. To obtain the absolute value of

in1 − in2, we use a conditional to detect which of the two inputs is the smallest. It is

then subtracted from the other, larger input.

For each expression that appears in the code, a node is generated in the IRR. Nodes

are also created for every right-hand side expression of a <= statement and condition

expression. Furthermore, the circuit has a node for each component and port.

Nodes corresponding to input ports of the main module are particular: their value

is always supposed to be defined in the environment. For practical purposes, they are

defined as constants. In practice, these constants may not have a concrete value but

may be Coq variables.

5.2.3 Generating IRRs

In this section, we describe turning a COQQTL circuit into an IRR. Figure 5.21 gives

a high-level overview of the process for converting a circuit from COQQTL to IRR:

starting from a single COQQTL module, we first build a log, tracking its components

3
Note that enough delay should be left between input updates for the circuit to remain stable.
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COQQTL
design Log Validated

log IRR

Figure 5.21: Generation of an IRR from a module

and the connections between them, enforcing some properties such as well-typedness

are along the way. Using this log, we check that the values of all components are

indeed defined and that the module does not contain dependency loops. When the

log successfully passes these checks, we consider it validated. It is only then that we

generate the actual IRR.

To generate an IRR starting from a (validated) log, we begin by defining a function

for defining an IRR node for a single COQQTL expression, which is relatively easy (all

COQQTL-expressions can be expressed using a few SMT-friendly primitive bitvector

operations). This function needs to be called for each node in the IRR. Perhaps

surprisingly, this process is not entirely trivial: we generate nodes in a specific order,

ensuring that all dependencies have been handled before creating it. In contrast to that

process, evaluation is straightforward and terminates trivially: evaluating all nodes in

order is sufficient.

Note that we only described how single modules are handled. In general, however,

modules can include other modules. It turns out that just like module instances are

inlined in their parents, their IRR can be included in that of their parent (for some

definition of inclusion). Modularity extends to reasoning about modules: a result

proved once on a module’s IRR holds for all instances.

In the rest of this section, we cover the transformation from circuits to IRR in more

detail. We first consider simple modules that do not include instances before turning

to the general case.

5.2.3.a Simple module to log

The first step of taking a syntactically valid simple COQQTL module to an IRR is to

convert its statement into a log, a structure in which component declarations and con-

nections are kept distinct. During its construction, all name-based references are turned

into id-based references, simplifying further analysis. A log contains two elements:

• A map of ids to components (we introduce unique ids to avoid having to deal
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module m:
input ina: UInt <1>
input inb: UInt <1>[2]
output out: UInt <1>

wire w: UInt <1>
when ina:

w <= inb[1]
else:

wire z: UInt <1>
z <= add(inb[0], inb [1])
w <= z

out <= w

(a) Original module

Components:
1 Input UInt<1>
2 Input UInt<1>[2]
3 Output UInt<1>
4 Wire UInt<1>
5 Wire UInt<1>

Connections:
when 1 :

4 <= 2 [1]
else:
5 <= add( 2 [0], 2 [1])

4 <= 5

3 <= 4

(b) Resulting log

Figure 5.22: Module to log

with scope resolution later on — remember that names can be shadowed)

• A “connection tree”, a data structure storing the connections and the conditions

under which they occur; it is a syntax tree with only the connect and invalidate

statements remaining (as well as the conditions guarding these statements)

We also check for some semantic properties along the way. Non-exhaustively, we

guarantee that:

• There are no typing errors

• There are no flow errors

• The names are valid and unique

• Patterns cover all variants of an enum

In Figure 5.22, we give an example of a (somewhat contrived) statement next to its

corresponding log. This illustration highlights that the connections section of the log

is simply a subset of the original statement. The key differences are that name-based

references have been replaced with index-based ones, and component declarations have

been filtered out.

5.2.3.b Cleanup and validation

At this point, we have started digesting the statements. We have logs where all the

information is easy to access, but we still have to check that the following properties
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a <= b
when UInt <1 >(0):

skip
else:

a <= c

Figure 5.23: Listing — conditions and overriding
Conditions are not analyzed, so the first connection is not de-
tected as necessarily overridden

are respected:

• All components are initialized (or invalidated)

• There are no cycles

We already described most of what there is to know about these checks back in

Subsection 5.1.2.e (for components initialization) and Subsection 5.1.2.f (for loops de-

tection).

In addition to performing these checks, necessarily overridden statements are also

removed during this step. We already discussed conditions for removal when we first

presented loop detection. In particular, we mentioned how overridden connections

are not considered when looking for cycles. A statement is necessarily overridden if

and only if there is no possible valuation of the context such that no later connection

overrides it.

The usual caveat about conditions not being analyzed applies here. The detection

process of necessarily overridden connections is an underapproximation: there may

be false negatives. An example is shown in Figure 5.23. Just like Figure 5.13, this is a

situation where COQQTL misses something that a human reader could trivially see:

the same branch will always end up being taken, as the condition is the “false” constant.

The first write on a is necessarily overridden in practice, but COQQTL does not remove

it.

Note that this behavior is not explicitly described in FIRRTL’s specification [154].

Here, we mostly align with the firtool FIRRTL compiler, with one key distinction:

unlike COQQTL, firtool performs some basic condition analysis. For example, in the

scenario mentioned above, firtool would recognize the first connection as necessarily

overridden because the expression consists of a single constant. However, its condition

analysis does not extend beyond this level of complexity.

At the end of this stage, we have a verified log (without cycles and with all com-
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ponents guaranteed to be initialized in all circumstances) and normalized (with all

conditions that match COQQTL’s underapproximate criterion for being necessarily

overridden removed).

5.2.3.c Log to IRR

We want to generate an actual IRR expression starting from a verified and normalized

log. We proceed in two steps.

First, we define a function for resolving a single id, i.e., generating the corresponding

IRR node. This node should represent the id’s value at the end of the cycle, which

depends on many elements (the id may be the target of many connections that require

the final values of other ids to be known).

The function we define assumes that all the ids required to resolve the current id

have already been resolved. We expect to find the nodes associated with these ids in a

map dedicated to the storage of resolved ids. Note that these dependencies correspond

to the arrows seen in Figure 5.20 and that there exists a way of picking ids that does not

lead to a cycle: the logs we are handling have been verified to be loop-free earlier.

We build another function from isolated IRR nodes to a full-blown IRR for a given

log. Its role is to pick an appropriate order for sending the ids to the resolution function;

in other words, it does topological sorting on our dependency graph. Generating the

nodes in order is not strictly required: inserting a reference can be done before the

related id is resolved. Our implementation stores the IRR graph as a hashmap from

integers to IRR nodes, with the integers acting as identifiers and sorted by topological

order. Computing this order makes later proofs easier.

Some expressions that appear in the initial design impact multiple ids. Repeating

the translation of the same expressions for all the ids they impact would be wasteful.

Of course, we already manage repetitions related to ids, as discussed in the previous

paragraph — we do not inline the definition of referenced ids; instead, we transform

references to ones to the associated IRR nodes. The conditions introduced in COQQTL’s

branching expressions (e.g., when) are another source of redundancy. Just like in Kôika,

we introduce nodes for storing the IRR form of these expressions. These nodes are

generated as a side effect of the function for handling ids. Inserting such a node in the

IRR shifts the identifiers of all the following nodes, but the overall topological order

between component ids is maintained.
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Resolving a single id Generating the node corresponding to a single id is done in a

series of steps. We start with a target id and the entire log obtained for the circuit. In

particular, we can access the whole tree of connections.

Our first step is to collect the relevant connections in the connections tree. We do

this by filtering the tree and removing all connections that do not impact the current id.

For instance, we would remove a connection of the form b <= x when handling the a id.

Perhaps more surprisingly, we also remove the connections that target subcomponents

of our id. For instance, we would remove a connection of the form a[2] <= x when

handling the a id. However, we do not remove connections to prefixes of the id. For

instance, we would not remove a connection of the form a <= xwhen handling the a[2]

id. Abstract connections that may be prefixes of the id are also relevant. For instance,

a[m + n] <= x is kept when handling id a[2].

The next step is similar to the removal of necessarily overridden connections men-

tioned in the previous subsection. Although we removed such connections before, we

did not do it from the standpoint of the precise id under focus. For instance, assuming

we are focusing on id a[2], a sequence of connections a <= x, a[2] <= y would survive

the initial filter (assuming it is not overridden as far as, e.g., a[0] is concerned) as well

the removal of connections irrelevant to a[2]. Nevertheless, the second one would

necessarily override the first connection in this context. The overall filtering process

is identical to the one described previously, except that we act as if all connections

targeted precisely the same id.

Afterward, we analyze all the conditions that appear in the tree. For each of them,

we check whether we handled them before, i.e., if an IRR node representing their value

already exist. We handle each condition that needs handling, inserting them in the IRR

as appropriate and memorizing the binding.

We have two kinds of connections left in the tree: some target the id directly, whereas

others target one of its prefixes. As we care about the effect of connections on the id

itself, we make the latter connections more precise. For instance, assuming we care

about id a[2], we turn connection a <= x into a[2] <= x[2].

Similarly, some of the connections left in the tree are abstract. a[m + n] <= x only

impacts the value of a[2] when m + n equals 2. To fix this, we add conditions in the

tree for guarding such connections. Unlike what we did for the conditions that were

present in the base tree, we do not generate nodes in the IRR for the new ones (although

some more sharing here may technically be applied).
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IRR expression 𝑒 :=

| irr_uconst −→
bv | irr_sconst −→

bv | irr_vconst type 𝑛
−→
bv | irr_bconst fields

−→
bv

| irr_econst variants
−→
bv

| irr_ref 𝑛
| irr_sfield 𝑒 subfield | irr_sindex 𝑒 𝑛 | irr_saccess 𝑒 𝑒𝑠
| irr_as_enum_tag variants tag 𝑒 | irr_as_uint 𝑒 | irr_as_sint 𝑒
| irr_as_clock 𝑒 | irr_as_async_reset 𝑒
| irr_shl 𝑛 𝑒 | irr_shr 𝑛 𝑒
| irr_andr 𝑒 | irr_orr 𝑒 | irr_xorr 𝑒
| irr_bits hi lo 𝑒 | irr_head 𝑛 𝑒 | irr_tail 𝑛 𝑒
| irr_pad 𝑛 𝑒 | irr_cvt 𝑒
| irr_neg 𝑒 | irr_not 𝑒
| irr_add 𝑒1 𝑒2 | irr_sub 𝑒1 𝑒2 | irr_mul 𝑒1 𝑒2 | irr_div 𝑒1 𝑒2 | irr_rem 𝑒1 𝑒2
| irr_eq 𝑒1 𝑒2 | irr_neq 𝑒1 𝑒2 | irr_lt 𝑒1 𝑒2 | irr_leq 𝑒1 𝑒2 | irr_gt 𝑒1 𝑒2
| irr_geq 𝑒1 𝑒2
| irr_and 𝑒1 𝑒2 | irr_or 𝑒1 𝑒2 | irr_xor 𝑒1 𝑒2
| irr_dshl 𝑒1 𝑒2 | irr_dshr 𝑒1 𝑒2
| irr_cat 𝑒1 𝑒2
| irr_mux selection port𝑎 port𝑏 | irr_when cond t_branch f _branch
| irr_pattern on branches
| irr_overwrite_index 𝑒 𝑛 𝑣 | irr_overwrite_field 𝑒 field 𝑣
| irr_invalidated
| irr_module_input instance port | irr_module_output instance port deps.

Figure 5.24: Syntax of IRR expressions
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After this tedious pretreatment, we are free to focus on generating the IRR expres-

sion. We will not describe this process in detail: remember that there is almost a

one-to-one correspondence between COQQTL and IRR expressions. At this point, only

conditions are left to handle through the conditional constructor of IRRs — the syntax

of IRR expressions is given in Figure 5.24.

Finally, we extend it with information about the subcomponents of the current id.

Indeed, the real value of a[2] depends on that of a[2].f. However, we removed all

such connections back at the filtering stage. We expect that all of the subcomponents

of the id have been resolved before the id itself is resolved. Resolving every single id

would be wasteful: for instance, if there is a single connection targeting a vector of size

1024, e.g., v <= w, then it would be wasteful to introduce 1024 ids which would all

restate a specialized version of this connection. Here, resolving only id v would suffice.

In general, we resolve the ids we strictly have to.

Generating a topological order Generating a topological order is relatively straightfor-

ward. Starting from a dependency graph (which we already generated when checking

for loops during the log validation), we apply a classical depth-first search algorithm.

We call the resolution function directly from the one that does the sorting and tracks

the identifier to be used for the next IRR node — we are careful to consider the fact that

a call to the resolution function may result in the insertion of several nodes in the IRR

(that function returns a tally of the inserted nodes).

Section recap

In this section, we presented our COQQTL IRR. In particular, we explained why

we turn to this approach, how the IRR is structured, and how the conversion is

handled in practice.

Building this IRR is a first step towards the construction of a full-fledged verifica-

tion framework in the line of our work with Kôika. Indeed, an IRR is an explicit

form that contains all the information necessary to the generation of, e.g., SMT

queries. Our earlier work about generating such queries from the IRR defined

for the Kôika language can be largely reused in the context of COQQTL. More

generally, the work that we present in this section is an important stepping stone

towards efficient and modular verification.

In the next section, we consider both short-term and long-term perspectives.
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5.3 Perspectives

Section outline
In this section, we describe perspectives for future work. We start by mentioning

two short-term prospects, with Subsection 5.3.1 presenting our plans for han-

dling modules and Subsection 5.3.2. The later sections describe long-term plans.

We discuss the development of higher-level languages built on top of COQQTL in

Subsection 5.3.3. In Subsection 5.3.4, we outline the benefits that a Coq implemen-

tation of a generic IRR form could have. We then turn to the missing features of

COQQTL in Subsection 5.3.5. With these features implemented, we could import

arbitrary designs expressed in FIRRTL into COQQTL. Finally, in Subsection 5.3.6,

we mention potential targets for verification.

5.3.1 Managing modules

Until now, we have been considering a simplified version of COQQTL that does not

include modules. This subsection discusses the changes required to handle them.

Although module instances are semantically inlined in their parent, actually doing

the inlining systematically in practice would be wasteful: it would make exploiting

the fact that different instances of a module share properties harder to exploit. The

interface of an instance is a bundle where only ports appear. We also know which input

ports impact the value of which output ports. Input and output ports appear in the

IRR through special constructors (irr_module_input and irr_module_output). Unlike

classical dependencies, those between inputs and outputs appear explicitly in the IRR

(this is the deps argument of the irr_module_output expression). Both expressions

contain a link to their module of provenance.

Even at this level of representation, modules remain independent. In particular,

each module has its own IRR. Modules in which another module is instantiated can

access the third-party IRR to evaluate its output ports.

When reasoning manually, high-level results about modules can be used to limit

the evaluation cost. For instance, if a particular module is known to implement mul-

tiplication in one cycle, then a read to its output can be replaced with an expression

multiplying its inputs directly — the actual definition of the module does not even have

to be read.
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COQQTL
design IRR

Property IRR
property

SMT query

Extracted
SMT query

Proof
trace

SMT-solver

Coq

Figure 5.25: SMT-based reasoning in COQQTL
The gear icon ( ) indicates transitions that occur automatically

5.3.2 Integrating SMT-solvers

This section describes how IRRs can generate SMT obligations. We propose a pipeline

for directly interacting with solvers within the Coq proof assistant. At the time of

this writing, work on the concrete implementation of a link between an external SMT-

solver and our implementation of COQQTL has yet to start. However, the more complex

problem of converting a COQQTL design to an explicit form has been handled for a

large subset of the language (i.e., support for modules is still a work in progress). In

other words, we already have the basic constructs in place to build SMT queries similar

to those we built in Kôika (as described in Section 4.3) for this subset of the language.

What is left to do, then, is to implement a pipeline for discharging Coq goals

involving COQQTL constructs to external solvers. We introduce the pipeline we intend

to implement in Figure 5.25. This pipeline differs from the one we implemented in

Kôika (described in Figure 4.9) in several regards. Indeed, although this first attempt at

integrating SMT-solvers yielded satisfactory results, the process through which these

results were obtained was cumbersome. Users were required to step out of the Coq

environment and launch scripts to pass extracted data to external solvers. The Coq

kernel did not validate any proof. In effect, the external tools were trusted.

The process we envision would run as follows. The user would start by defining a

property about a COQQTL design. As represented by the dotted arrow, this property

could reference concrete elements of the design directly. As described in Section 5.2,

IRRs can be derived automatically for COQQTL designs. As the semantics of COQQTL
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designs is defined in terms of IRRs, all properties of COQQTL designs admit IRR-based

formulations. For instance, references to components of the designs become references

to IRR nodes. This process corresponds to the one we described for Kôika. It is only for

the actual proving process that the methods begin to diverge. We plan to include a tactic

for turning Coq goals about COQQTL designs (in IRR form) into SMT queries. This

tactic would come as part of a plugin capable of calling an external, proof-producing

SMT-solver. The proof trail generated by the solver should then be converted to a term

compatible with Coq’s calculus and incorporated into the proof (a problem already

solved by existing plugins [151]).

Note that the SMT-solver would not be a substitute for classical Coq tactics. In

situations where the solver fails, all the facilities of the proof assistant remain available.

Goals simple enough to be solved by the solver should be deferred to it, while the

high-level structure of the proof should be built manually in Coq.

5.3.3 Higher level of abstraction

Although the FIRRTL language is human-readable, it remains low-level. After all, it

started as an intermediate representation of the Chisel language. Implementing this

language on top of COQQTL is a natural next step. However, although Chisel would

probably be the easiest one to port to Coq, there are other languages we may want

to consider on account of their traction within the industry, such as SystemVerilog or

VHDL. In order to connect COQQTL to these languages, a verified compiler is required

(which in turn requires a formal semantics of the language in question).

Since we already have a formal semantics and much infrastructure around Kôika,

we may also consider this language a viable target. We could also reuse existing

implementations of subsets of Verilog, such as the one used in Kôika.

5.3.4 Generalizing IRRs

During this thesis, we implemented IRRs twice: once for Kôika and again for COQQTL.

We did not use a unified representation for both applications since we elected to tailor

the IRRs to our precise workloads. Switching to a more generic representation would

make the conversion slightly more complex, but it would make the conversion to SMT

form and interaction with SMT-solvers free.
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SMT formulas already have the property of being generic. The reason why we do

not content ourselves with them is that they are unwieldy. What the IRR brings over

such formulas is a representation that can be handled by a proof assistant, as shown by

the manual verification that we did back in Chapter 4.

5.3.5 Supporting the whole specification

Back in the introduction of this chapter, we mentioned how we wanted to open the

possibility of verifying imported Chisel designs directly (after an unverified compilation

down to FIRRTL and an unverified but trivial transpilation from FIRRTL to COQQTL,

that is). For this to work in all generality, implementing the entirety of the specification

is required. The features our implementation is missing are:

• Verification statements used for testing designs, such as assertion statements

checked during simulation;

• Formatted prints for logging information during simulation;

• Probes, a feature used for accessing the values of internal components of modules,

used for verification statements based verification;

• Layers, a feature used for keeping secondary parts of modules (e.g., those related

to testing and debugging) distinct from the base definition;

• A limited form of type inference — our types are always given explicitly;

• Interplay with externally defined modules;

• Annotations (for storing arbitrary metadata about portions of a design).

Some parts of the specification may be ignored. For instance, we could skip asser-

tions — after all, we provide a system that supersedes this mechanism. However, even

these parts would be valuable additions. Assertions constitute an accessible form of

formal methods. For instance, such assertions could be automatically verified when

detected in circuits.

5.3.6 Validating the methodology on non-trivial examples

There are many targets that we could pick to illustrate our methodology. Properties

that fall outside of the scope of traditional verification tools are especially interesting.

Several high-profile examples of open-source projecs related to RISC-V CPU de-

sign were produced in Chisel, including the Rocket Chip Generator [152] and the

BOOM [156] processor. These designs could be compiled to FIRRTL and import. The
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verification of security properties on these designs would make for a great illustration

of our methodology.

5.4 Conclusion

This chapter discusses our work on COQQTL, our Coq implementation of the FIRRTL

IR. The primary objective of this project is to establish a basis for a framework for general-

purpose hardware verification based on a real HDL with some industrial presence. We

implement most of the language’s specification, barring some non-critical features such

as assertions, which we plan to address in future work.

We develop a pair of transpilers between FIRRTL and COQQTL. This makes it

possible to import real Chisel designs for verification within Coq and to export designs

built within Coq for real-world use.

Additionally, we construct an IRR for COQQTL in the spirit of the one we developed

for Kôika. This IRR gives a way of reasoning about FIRRTL designs efficiently from

within the Coq proof assistant.

Compared with Kôika, we plan to introduce a more comprehensive integration of

automatic solvers. We aim to streamline the verification process, making it less manual

and reducing its TCB footprint. By enhancing automation and minimizing reliance on

manual labor, we hope to improve the overall efficiency of hardware verification within

the Coq environment.

Future work will focus on refining this integration, ensuring that the entire FIRRTL

standard is covered, and applying our methodology to the verification of large-scale

designs.
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Conclusion

In this thesis, we set out to answer a specific research question.

Research question

How to formally verify implementations of security mechanisms for processors

at the register transfer level of description within a proof assistant?

In this final section, we summarize the work presented in this thesis and introduce

perspectives for future work.

Section Outline
Section 6.1 summarizes the main ideas introduced in this thesis. Concrete avenues

for short-term improvements of our work are outlined in Section 6.2, whereas

Section 6.3 describes broader perspectives for further research work in the area.

6.1 Summary

The growing dependence of our societies on computers makes them susceptible to

cyberattacks. Incorrect software can introduce vulnerabilities that can have serious

real-world consequences. By using formal verification, we can precisely specify the

behavior of software and verify that they are free of vulnerabilities. Software relies on

hardware, and software verification typically assumes the underlying hardware correct.

If this hypothesis is incorrect, the proofs built on top of it are essentially worthless. The

need for software verification, in turn, induces a need for practical methods to verify

hardware.

Given the importance of hardware security, manufacturers verify their designs using

testing-based and formal processes. However, these formal processes rely on limited

tools that are not fit for handling the problem in its full generality.

In recent years, fundamental assumptions about processor behavior have been
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shown to be incorrect for most modern hardware. The most striking examples were not

related to functional correctness but to temporal side channels [33], [34]. Checking that

a processor is free of such defects requires reasoning based on low-level definitions.

Proof assistants are well-suited for this task. However, their complexity and the various

performance pitfalls they present can be significant drawbacks.

We propose a methodology based on an intermediate representation for hardware

where all the information is encoded explicitly. We call this representation the In-

termediate Representation for Reasoning, or IRR for short. We define transformation

passes for simplifying hardware in IRR form according to the available hypotheses.

We prove each such pass semantics preserving. Users can define additional passes

according to their needs. The controllability of this process is a way of sidestepping the

performance pitfalls of the proof assistant. Furthermore, we include a connection to a

fully automatic resolution procedure, which can solve many goals by passing them to

an external SMT-solver. To add support for an HDL, defining a verified compiler from

it to the IRR is all that is required.

6.2 Short-term improvements

In the following, we present various short-term improvements we could apply to our

work. These improvements are about adding everything required for what we feel

would be a production-ready verification framework.

6.2.1 Extending COQQTL

The COQQTL implementation presented in Chapter 5 did not cover the entire specifi-

cation of the language. Having a reliable port of FIRRTL would be an excellent starting

place for hardware verification. It could provide a solid shared foundation for different

hardware verification projects, enabling researchers to focus on higher-level verification

concerns.

Supporting assertions would bring about a natural low-complexity way of incorpo-

rating hardware verification in hardware design. Proof obligations could be automati-

cally generated from such assertions — and perhaps even automatically verified.
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6.2.2 Improving the integration of automatic procedures

Our current bindings to SMT-solvers leave room for improvement. They require users

to step out of the Coq environment and execute unverified scripts that pass extracted

data to unverified tools. While suitable for a proof of concept, this approach makes the

TCB needlessly bigger, and the user experience could be enhanced.

TCB concerns Many automatic procedures are proof-producing, meaning that they

generate proof trails that can be used to derive Coq proof terms. Proof-producing

procedures are not added to the TCB, as their results are not taken at face value but

checked by the Coq kernel, as any user-written Coq proof would be. There exist tools

for generating Coq proofs from external solvers [151], [157]. We could adapt their

results to our needs.

User experience concerns Coq supports user-defined plugins that can interact with the

environment and introduce custom tactics. This feature enables the approach described

in Section 5.3.2, allowing users to conduct their developments entirely within Coq.

Calling external solvers asynchronously could be beneficial: such calls may last a

few minutes, disrupting the workflow. Unfortunately, while Coq supports the asyn-

chronous processing of proofs, this capability does not extend to individual tactics.

6.2.3 Illustrating our methodology

We currently lack examples of non-trivial verification work performed in COQQTL.

Numerous targets could prove interesting for this purpose. Verifying either functional

or security properties of third-party processors such as those of the Rocket Chip fam-

ily [152] the BOOM core [156] would be a good test of the capabilities of our framework

and methodology in practical applications. These processors are more complex than

those we considered in our earlier work, allowing us to incorporate more sophisticated

security mechanisms. For instance, we could turn to verifying an extended shadow

stack mechanism with tighter integration into the system.
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In the following, we discuss ways to expand our work. In contrast to what we presented

previously, this section is about long-term goals.

6.3.1 Full verification of processors

Despite numerous projects in this field, we are unaware of any fully verified realistic

processor. By “realistic”, we mean a processor that goes beyond a toy model; e.g.,

it should be capable of running a barebones Linux-based operating system. By “fully

verified”, we mean that adherence to a specification must be formally enforced. The Sail

project [149] provides formal specifications for many standard ISAs. Straightforward

reference implementations can be derived from these specifications. The execution

traces of valid processors must align with those of these implementations, according

to some notion of compatibility. Furthermore, this project covers the generation of Coq

definitions from such descriptions.

In the late 1990s and early 2000s, there was an active research community focused

on validating microarchitectural optimizations, such as pipelining or Tomasulo’s algo-

rithm [158], [159], [160], [161], [162]. However, their results were obtained on models,

not RTL descriptions. Furthermore, they used simplistic custom specifications rather

than standard ISAs. Nonetheless, these works provide insight into how we may ap-

proach our proofs. We could follow similar arguments to demonstrate that concrete

RTL implementations are valid refinements of the Sail specification.

More recently, Reid et al. [163] described a verification workflow used at Arm,

introducing techniques for working with complex microarchitectures. While they verify

RTL descriptions, their process relies on bounded model checking. Therefore, their

results come with the limitations inherent to this form of verification.

Although our workflow is general enough to accommodate the verification of func-

tional properties, we did not consider such properties in this thesis. The Kôika proces-

sor we verified (heRVé
1
) is also limited: it implements the base version of RISC-V and

lacks many privileged features. Considering the target we outlined, we would need to

implement a particular set of extensions (adding native support for multiplications and

divisions, single- and double-precision floating point numbers, atomic instructions,

1
https://gitlab.inria.fr/SUSHI-public/FMH/herve
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and compressed instructions that add 16-bit encodings for common operations) and

extend our support of the privileged version of the specification [31].

Although this objective is distant, it can be split into actionable, incremental steps.

We could start from an RV32I core and gradually ramp up to more complex designs

(adding extensions one at a time). At first, our focus should be on feature-completeness.

The introduction of advanced optimizations can be handled separately from this task.

Achieving this would represent a significant milestone, enabling the formal veri-

fication of interesting hardware-software stacks in the line of Lööw et al. [140] and

the Verisoft stack [164]. The prospect of running CompCert [165] on a seL4 microker-

nel [166], itself running on a verified processor, is particularly alluring. Reaching that

goal would allow us to ground the hardware hypotheses that are often implicit in the

formal verification of software.

6.3.2 Validation of security mechanisms

In the previous section, we scratched the surface of what formal hardware verification

may enable. Verifying the adherence of a processor to a formal ISA specification

can be used to ground hardware-software contracts: the software may safely assume

that the underlying hardware behaves in a certain way. However, there are tasks for

which additional guarantees are required. For instance, we may want to prove that a

cryptographic process executes in constant time and that the information it manipulates

cannot be leaked to other processes.

In 2015, Intel introduced SGX (Software Guard Extensions), a set of extensions

related to trusted execution environments (i.e., environments for running code in isola-

tion from the rest of the systems). In 2021, after a string of exploits [167], this extension

was deprecated for the main line of Intel processors.

Lau et al. [116] describe verifying a comparable mechanism for process isolation.

They formally prove that their system provides a strong notion of isolation, which

implies that they are effectively clear of leakage issues that weakened SGX. This work

clearly illustrates the benefits of a proof assistant-based verification process.

The additional guarantees that security mechanisms claim to bring are a natural

target for formal verification. In this thesis, we gave the example of verifying a shadow

stack. We could replicate this mechanism in COQQTL and extend it incrementally to

bring it closer to what Intel’s CET [37] includes. The UEFI secure boot process [168]
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would also be an interesting target for verification. Indeed, a vulnerable boot process

strongly limits any OS-provided guarantees. In particular, formal guarantees provided

by systems such as seL4 [166] may be broken. Verifying such mechanisms on realistic

processors (as described in the previous section) would set this work aside from the

prior art.

6.3.3 Flexibility and automation

In this thesis, we consider the verification of fixed designs, which are often intentionally

structured to simplify the verification process. The same is true for broader academia.

While verifying such designs is a significant challenge in its own right, it is different from

verifying industrial designs that are constantly evolving throughout their development.

The value of a hardware verification methodology is closely linked to its usability. For a

methodology to be compatible with industry needs, it must be cost-efficient and flexible

enough to accommodate frequent changes.

Part of the answer comes in the form of methodological adaptations. Hardware

changes tend to be local, which should be reflected in our verification methodology:

small changes should have a small impact on the overall verification process. Mod-

ular reasoning and refinement have been successfully used in various projects to this

end [114], [119].

We view quality integration of automation as a prerequisite for the further success

of proof assistants-based verification. While Coq may not excel in this area, as it lacks

native general-purpose tactics comparable to Isabelle’s Hammer, third-party plugins

are being developed within the community to meet this need. Automation contributes

to flexibility: powerful automatic tactics may foster a highly succinct style of proof

scripts that do not describe functional details. These details are filled in automatically

at the last moment; changes are implicity taken into account.

We expect improvements in methodology to arise naturally as we tackle increasingly

complex examples. Automation is a key component of the path of least resistance for

such endeavors.

Section recap

In this section, we summarized the work done in this thesis and presented avenues

for further research. For the short term, we outlined the essential implementation
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steps required for building a production-ready verification framework around

COQQTL. For the long term, we stressed the importance of automatic procedures.

We proposed the full verification of a processor capable of running Linux as a

meaningful milestone to aim for.

Closing remarks

Like any other good basis for a thesis subject, hardware verification is a chal-

lenging problem. Considering its importance, it is also woefully understudied:

hardware security forms the basis of all cybersecurity. Although chip designers

have identified this issue, the solutions applied in the industry fall short of an-

swering this challenge in its most general form. Proof assistants are powerful and

trustworthy enough for this task. However, they are also prohibitively complex

tools. Efficient, tried and tested verification methodologies and good support for

delegation to automatic tools are required to make this approach compatible with

industrial requirements.
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Acronyms

ABI Application Binary Interface. 83

BMC Bounded Model Checking. 58

CC Common Criteria for Information Technology Security Evaluation. 32, 35

CERT Computer Emergency Response Team. 32

CET Control-flow Enforcement Technology. 35, 139

CISC Complex Instruction Set Computer. 83

CPU Central Processing Unit. 47, 55, 60–62, 96, 132

CRV Constrained Random Verification. 57

DSL Domain Specific Language. 39, 62, 63

EAL Evaluation Assurance Level. 35, 58

EDA Electronics Design Automation. 26, 57

FPGA Field-Programmable Gate Array. 26–28, 43, 90, 95

HCL Hardware Construction Language. 29

HDL Hardware Description Language. 25–29, 39, 43, 44, 57, 60, 61, 63, 64, 67, 99, 101,

102, 118, 133, 136

HLS High-Level Synthesis. 28

HSM Hardware Security Modules. 64

IR Intermediate Representation. 102, 133
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IRR Intermediate Representation for Reasoning. 68–71, 73, 74, 76, 78, 79, 81, 88, 92, 93,

95, 101, 118–122, 125, 126, 128–133, 136

ISA Instruction Set Architecture. 25, 30, 60, 62, 64, 65, 83, 97, 138, 139

LUT LookUp Table. 90, 95

ORAAT One Rule At A Time. 51, 55

OS Operating System. 96, 97, 140

RISC Reduced Instruction Set Computer. 30, 47, 65, 83

RTL Register Transfer Level. 27, 28, 43, 61, 63, 64, 138

SAT boolean SATisfiability problem. 36, 38–40, 58

SGX intel Software Guard eXtensions. 139

SMT Satisfiability Modulo Theory problem. 3, 15, 16, 21, 38–40, 60, 63, 91–94, 98, 99,

119, 122, 128, 130–132, 136, 137, 158

TCB Trusted Computing Base. 21, 32, 35, 42, 59, 92, 93, 98, 133, 137

UVM Universal Verification Methodology. 57
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Titre : Spécification et vérification formelle de mécanismes de sécurité pour processeurs
RISC-V

Mots clés : méthodes formelles, Coq, vérification matérielle, microarchitecture, RISC-V

Résumé : Dans cette thèse, nous con-
sidérons la vérification de mécanismes de
sécurité pour processeurs RISC-V décrits au
niveau des transferts de registres. Nous pro-
posons une approche basée sur des assis-
tants de preuve, des outils généralistes pro-
duisant des preuves à haut degré de fiabilité.
Cette approche présente deux avantages clés
par rapport aux méthodes employées dans
l’industrie : les assistants de preuve reposent
sur une base de confiance limitée et perme-
ttent d’exprimer et de vérifier des propriétés
générales au sein d’un seul et même envi-
ronnement. Cependant, il s’agit d’outils com-
plexes et sujets à des problèmes de perfor-
mance. Par ailleurs, ils ne sont pas spécial-

isés sur la vérification de matériel. La formal-
isation des éléments pertinents pour ce prob-
lème, tels que la sémantique de langages de
description du matériel, est un prérequis pour
la vérification. Nos contributions sont dou-
bles. 1/ Nous proposons un cadriciel de vérifi-
cation formelle basé sur l’assistant de preuve
Coq et Kôika, un langage de description de
matériel avec une sémantique formelle. Nous
illustrons ces travaux par la vérification d’une
pile fantôme intégrée à un processeur RISC-
V. Par ailleurs, nous explorons l’intégration
de solveurs SMT pour automatiser le proces-
sus de vérification. 2/ Nous proposons CO-
QQTL, un portage du langage de description
du matériel FIRRTL au sein de Coq.

Title: Formal specification and verification of security mechanisms for RISC-V processors

Keywords: formal methods, Coq, hardware verification, microarchitecture, RISC-V

Abstract: In this thesis, we consider the ver-
ification of security mechanisms for proces-
sors described at the register-transfer level.
We propose an approach based on interactive
theorem provers, generalist tools used for pro-
ducing high-assurance proofs. This approach
has two key benefits over the current state
of formal methods in the industry. First, in-
teractive theorem provers come with a very
small trusted computing base. Second, they
can express and verify very general proper-
ties in a single, unified environment. Our re-
liance on these tools comes with distinct chal-
lenges, such as the fact that all the domain-
specific knowledge about hardware needs to

formalized before any verification work can
proceed. Furthermore, interactive theorem
provers are arcane tools that come with a
number of performance issues. Our contribu-
tions are twofold. 1/ We design a verification
framework around Kôika, a hardware descrip-
tion language with a formal semantics, in the
Coq prover. We use this framework to verify
the implementation of a shadow stack added
to a RISC-V processor. We explore the in-
tegration of SMT-solvers into this framework
as a means of automating the verification pro-
cess. 2/ We port FIRRTL, a hardware de-
scription language with use in the industry, into
Coq.
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