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Intro State of the art

Cybersecurity

Cybersecurity is about enforcing security properties for information systems:
• Confidentiality
• Integrity
• Availability

Not obvious, as illustrated by many recent incidents, including:
• Pegasus (2020)
• Spectre/Meltdown (2018)
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Intro State of the art

Cybersecurity and trust

Cyber Resilience Act (2024): “Rebalance responsibility towards manufacturers”

=> How to prove that security claims are substantiated?

Common Criteria for Information Technology Security Evaluation:
• International standard (ISO/IEC 15408)
• French certification authority: ANSSI
• Highest assurance level: formal methods
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Intro State of the art

Topic

“Formal specification and verification of security mechanisms for RISC-V processors”

We want to:

• Develop RISC-V processors…
• Describe the properties that our mechanisms enforce (formal specification)
• Verify that our implementation is correct w.r.t. the specification (formal proof)
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Intro State of the art

Research question

“How to formally verify implementations of security mechanisms for processors at the
Register-Transfer Level (RTL) of description within a proof assistant?”

Note:
• We do RTL verification:

• Hardware = registers + rules describing how they are updated
• We handle the hardware’s definition directly

• We use proof assistants:
+ Versatile formal methods tools
+ Small trusted computing base => high-assurance guarantees
- Manual workflow
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Intro State of the art

Formal verification of hardware
Formal verification is common in the industry:

• Multiple approaches, including: assertion-based verification, model checking
(bounded or unbounded), equivalence checking

• Many commercial tools, e.g., OneSpin 360 DV1

There are active research communities on such verification methods:
• Work on formal verification tools
• Verification of concrete systems

However, these approaches do not rely on proof assistants

1https://onespin.com/products/360-dv-verify/
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Intro State of the art

Proof assistant-based hardware verification — 1/2

Instruction Set Architecture (ISA) level verification:
• Architectural reasoning
• E.g., Sail4
• However, we are concerned with microarchitectural security properties

Model-based verification:
• The hardware’s definition is not verified directly: a model is built first
• E.g., work on DRAM controllers
• However, the model may not be faithful

4ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS, POPL’19, A. Armstrong et al.
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Intro State of the art

Proof assistant-based hardware verification — 2/2

Formal Hardware Description Languages (HDLs):
• HDLs equipped with a formal semantics
• E.g., Kôika6
• However, they do not include facilities for reasoning about hardware behavior

Verified stacks:
• Cover both hardware and software verification
• E.g., CakeML stack
• However, they are not focused on security properties

6The Essence of BlueSpec, PLDI’20, T. Bourgeat et al.
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Intro State of the art

Kôika: a formal HDL

Kôika is a formal HDL embedded within Coq.

Kôika design Verilog design
Verified compiler

≡
BitstreamBitstream

generator

Kôika is:
• A RTL language
• A rule-based language

• Designs are described as a set of rules
• The compiler infers the control logic automatically
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Intro State of the art

Kôika semantics, intuitively — 1/3
Independent rules

ℛ

Rule increment :
l e t v = read A in
write A ( v + 1 ) .

ℛ𝑖
Rule swap :
write B ( read C ) ;
write C ( read B ) .

ℛ′

A

B

C

B

C

A+1 A+1

C

B

clock cycle clock cycle

Reads and writes:
• Reads: access value at the cycle’s start
• Writes: visible only at the cycle’s end

One Rule At A Time semantics:
• As if rules were executed sequentially

• Actually run in parallel, if possible
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Intro State of the art

Kôika semantics, intuitively — 2/3
Write, then Read: conflict

ℛ Rule W:
write A 2. ℛ𝑖

Rule R:
write B
(read A + 1).

ℛ′

2 2

2

B

3

clock cycle clock cycle

Read after write in the same cycle: conflict.
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Intro State of the art

Kôika semantics, intuitively — 3/3
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Intro State of the art

Kôika scheduling and pipelines

Fetch Decode Execute Writeback

For a pipelined processor:
• One stage = one rule
• The stages communicate through FIFOs of size 1
• Writing to a full FIFO is considered a conflict
• Consequence: the stalling behavior is implicit!
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Intro State of the art

Our contributions

2

A verification framework
built around the Kôika

HDL

3

An extension of this
framework that allows
delegation to an SMT

solver

4

COQQTL, a formalization
of the industrial-grade
HDL FIRRTL within Coq
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Plan

1 State of the art
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Intro State of the art

Overview

We develop a verification framework for Kôika.

Kôika design Verilog design
Verified
compiler

≡
BitstreamBitstream

generator

Security
properties

Formal
proof We can:

• Develop designs in a formal HDL (Kôika)
• Simulate/synthesize them
• Reason about their behavior
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Intro State of the art

The processor

The Kôika developers wrote a processor:
• Embedded-class (4-stage pipeline, RV32I, unprivileged, no interrupts)
• 1000 lines of code
• Synthesizable: can run on FPGAs
• Not formally verified (but passes test suites)

We extend this processor with a verified shadow stack.
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Intro State of the art

The shadow stack security mechanism

f1 parameters

f1 return address
f1 local variables
f2 parameters

f2 return address
f2 local variables
f3 parameters

f3 return address
f3 local variables

f1 return address
f2 return address
f3 return address

Shadow Stack

Stack

stack
frame

stack
frame

stack
frame

We copy return addresses in an isolated, non-
addressable memory.
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Intro State of the art

The shadow stack security mechanism

f1 parameters

f1 return address
f1 local variables
f2 parameters

f2 return addressinjected address
f2 local variables

f3 parameters

f3 local variables

f1 return address
f2 return address

7
Shadow Stack

Stack

stack
frame

stack
frame

Issue detected!
We handle it, e.g., by halting the processor and
notifying the OS.
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Intro State of the art

Shadow stack — specification

The properties we want to prove:

Shadow stack buffer overflow
⟹ the processor halts

Shadow stack buffer underflow
⟹ the processor halts

Return to a modified return address
⟹ the processor halts

None of the above
⟹ the behavior is preserved

19 / 4



Intro State of the art

Proving properties of Kôika designs

Kôika design Verilog design
Verified compiler

≡

Security
properties

Formal
proof

Not so easy…
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Intro State of the art

Performance issues with vanilla Kôika

For non-trivial designs, most tactics take minutes to hours and consume large amounts
of RAM.

No single cause, some factors are:
• Rigidity of Coq’s evaluation tactics
• Complexity of Kôika’s semantics
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Intro State of the art

Proofs on Kôika designs
Somewhat counter-intuitively, compiling high-level Kôika designs into a lower-level
Intermediate Representation for Reasoning (IRR) facilitates proofs.

Kôika design Verilog design
Verified compiler

≡

IRR Security
properties

Formal proof

Verified
compiler≡

Our work
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Intro State of the art

Building IRRs — 1/2

Registers : {a, b}.

Rule r1 :
let x := read a in
let y := read b in
if x == 0 then

write b (y - y)
else

(write b 1; write a 2).

Schedule s : [r1].

𝑣1 a
𝑣2 b
𝑣3 0
𝑣4 1
𝑣5 2
𝑣6 𝑣1 == 𝑣3
𝑣7 𝑣2 - 𝑣2
𝑣8 (a) if 𝑣5 then a else 𝑣4
𝑣9 (b) if 𝑣5 then 𝑣6 else 𝑣3
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Intro State of the art

Building IRRs — 2/2

An IRR:
• Is an explicit representation of how register values are updated during a cycle
• Conflicts management is encoded explicitly in these expressions

We prove the Kôika to IRR compiler correct.

How do we actually reason on an IRR?
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Intro State of the art

Verification framework
We implement a collection of verified transformations on IRRs, e.g.:

• Prune
• ExploitReg
• Collapse
• Simplify

• SimplifyTargeted
• ExploitRegPartial
• ReplaceVar
• ReplaceSubact

These transformations can be applied manually by the user or using automatic tactics.

Kôika design Verilog design
≡

IRR0 IRR1 IRR2 … IRRn Security
properties

3

≡

≡ ≡ ≡ ≡
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Intro State of the art

Reasoning on IRRs — an example

Assume that we want to show that when 𝑎’s initial value is 0, then the final value of 𝑏 is 0.
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Assume that we want to show that when 𝑎’s initial value is 0, then the final value of 𝑏 is 0.
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𝑣1 a 0
𝑣2 b
𝑣3 0
𝑣4 1
𝑣5 2
𝑣6 𝑣1 == 0 0 == 0
𝑣7 𝑣2 - 𝑣2 b - b
𝑣8 (a) if 𝑣6 then a else 𝑣5
𝑣9 (b) if 𝑣6 then 𝑣7 else 𝑣4 if 𝑣6 then 𝑣7 else 1
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Assume that we want to show that when 𝑎’s initial value is 0, then the final value of 𝑏 is 0.
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𝑣1 a 0
𝑣2 b
𝑣3 0
𝑣4 1
𝑣5 2
𝑣6 𝑣1 == 0 0 == 0 1
𝑣7 𝑣2 - 𝑣2 b - b
𝑣8 (a) if 𝑣6 then a else 𝑣5
𝑣9 (b) if 𝑣6 then 𝑣7 else 𝑣4 if 𝑣6 then 𝑣7 else 1 b - b
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Quantitative summary

We successfully verified our shadow stack example using this method!

Furthermore, we synthesized our design and ensured that it behaves as expected on
real programs.

Verification duration: 10m35s, RAM usage: > 16GiB
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Summary

We extend Kôika, a formal HDL built within Coq, with a verification framework:
• We build a verified compiler from Kôika designs to IRR, a custom, explicit
representation

• We define a set of verified transformation passes to progressively simplify designs
We verify a shadow stack mechanism built into a synthesizable RISC-V processor.

We presented this work at CSF’238

Artifacts available9

8A generic framework to develop and verify security mechanisms at the microarchitectural level:
application to control-flow integrity, CSF’23, M. Baty et al.

9https://gitlab.inria.fr/SUSHI-public/FMH/koika/-/tree/CSF_2023
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Overview

We built a verification framework for Kôika. We successfully verified our target with it.
This was mostly a manual process and it was sensitive to design changes.

We expend this framework through the inclusion of a highly efficient SMT solver (z310):
• We can discharge most goals to the solver
• Coq facilities remain available for more complex ones
• More importantly, Coq certifies that the IRR generation is correct

10https://github.com/Z3Prover/z3
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Workflow

Kôika
design IRR

Property IRR
property

Manual
proof

SMT query Extracted
SMT query

SMT solver

Coq
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IRR to SMT conversion

SMT queries are:
• Written manually
• Very close to the original statements
• We prove that the new queries are equivalent to the previous ones

We rely heavily on our IRR:
• IRR is an explicit representation of Kôika designs
• We automatically generate an SMT variable per IRR variable
• References to registers are resolved to IRR variables
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Application to an extended processor

We extend the processor (work of Gabriel Defresne, Summer 2024 intern):
• We now support interruptions and exceptions
• Almost a full rewrite

Previously, we would have needed to rewrite the entire proof.
Now, the SMT solver handles the changes on its own.
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Quantitative summary and comparison

Previous duration (base processor) 10m35.57s
New duration (base processor) 4.30s

For the base processor, this corresponds to a speedup of about 150.

New duration (extended processor) 41.22s

More importantly, producing this proof is much easier: we do not search for a proof
manually.
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Summary

We extended our verification framework, following a hybrid Coq/SMT approach to
enable more automatic forms of verification.

Artifacts available11

However:
• Kôika is an academic language with no industrial use
• Kôika lacks major features for scalability: no modules

11https://gitlab.inria.fr/SUSHI-public/FMH/koika (framework),
https://gitlab.inria.fr/SUSHI-public/FMH/herve (processor)
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Overview

We introduce , a Coq formalization of the HDL.

:
• Originates as an intermediate representation for the Chisel HDL
• Can be used as a standalone HDL: human-readable
• Integrated into the LLVM CIRCT compiler

Chisel:
• A modern HDL embedded within Scala
• Used in academia (e.g., Rocket Chip RISC-V processor generator)
• Used in the industry (e.g., Google Tensor Processing Unit)
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Workflow
There are two ways of using COQQTL:

• Import Chisel designs compiled to FIRRTL into Coq
• Build COQQTL designs directly in Coq and export them

Chisel
e.g. a SiFive chip

Our Coq
formalization
of FIRRTL

Bitstream

compilation
firtool

transpilation

generation LLVM Circt
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COQQTL vs. Kôika

circuit c:
module transform {...}
module m:

input clk: Clock
input a: {
w: UInt<32>, v: UInt<1>

}
reg b: UInt<32>, clk

instance t of transform
when a.v:
t.in1 <= a.w
t.in2 <= b
b <= t.out

In comparison with Kôika:
• Not rule-based:

• More explicit
• No single, implicit clock

• Native modules:
• Less duplicated code
• Interesting consequences for verification

• Rich type system:
• Features such as native structs and enums
• Good for expressivity
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Specification and semantics

We start from FIRRTL’s specification v3.2.012:
• 81 pages long document
• Not a formal specification

The formalization of this semantics comes with a set of challenges:
• Discrepancies between the specification and the implementation
• Overall complexity:

• Rich type system
• Modules
• Detection of combinational loops

12https://github.com/chipsalliance/firrtl-spec/releases/download/v3.2.0/spec.pdf
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Challenge — detection of combinational loops

input in: UInt<8>[3]
wire w: UInt<8>[3]

• Two vector-typed components:
• in: input, read-only
• w: wire (combinational type)

• We split these registers into their atomic
components

[0]
[1]

[2]

[0]

[1]

[2]

in

in[1]in[0] in[2]

w[0] w[1] w[2]

ww
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Challenge — detection of combinational loops

input in: UInt<8>[3]
wire w: UInt<8>[3]
w <= in

• We connect each subcomponent of w to the
matching subcomponent of in
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Challenge — detection of combinational loops

input in: UInt<8>[3]
wire w: UInt<8>[3]
w <= in
w[1] <= w[2]

• The connection from in[1] to w[1] gets
overridden
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Challenge — detection of combinational loops

input in: UInt<8>[3]
wire w: UInt<8>[3]
w <= in
w[1] <= w[2]
w[2] <= w[1]

• The connection from in[2] to w[2] gets
overridden

• w[1] is defined by w[2], w[2] is defined by w[1]
• Loop!
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Challenge — detection of combinational loops

input in: UInt<8>[3]
wire w: UInt<8>[3]
w <= in
w[1] <= w[2]
w[2] <= w[1]
w[2] <= w[0]

• The connection from w[1] to w[2] gets
overridden

• No more loop
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Challenge — detection of combinational loops

input in: UInt<8>[3]
wire w: UInt<8>[3]
w <= in
w[1] <= w[2]
w[2] <= w[1]
w[2] <= w[0]

• Here, we split everything into atomic
components (naive solution):
+ Simple
- Performance impact

[0]
[1]
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Challenge — detection of combinational loops

input in: UInt<8>[3000]
wire w: UInt<8>[3000]
w <= in
w[1] <= w[2]
w[2] <= w[1]
w[2] <= w[0]

• In practice, we only introduce subcomponents
when strictly necessary

[0]
[1]
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[0]
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[2]
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in[1]in[0] in[2]

w[0] w[1] w[2]

ww
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A COQQTL IRR

We express ’s semantics operationally by compiling designs to an IRR:
• Conceptually similar to the Kôika IRR
• We add special constructs to, e.g., update the n-th value of a vector
• We check that designs are well-formed while building the IRR
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Summary

We formalize within Coq as :
• Unlike Kôika, FIRRTL is an industrial-grade HDL
• We compile COQQTL designs to an IRR
• No verification framework yet: future work

Artifacts available13

13https://gitlab.inria.fr/SUSHI-public/FMH/coqqtl
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Summary
We considered the formal verification of security mechanisms for processors at the
register transfer level of description within proof assistants.

We presented our three main contributions:

2

A verification framework
built around the Kôika

HDL

Presented at CSF’23
Artifacts available

3

An extension of this
framework that allows
delegation to an SMT

solver

Artifacts available

4

COQQTL, a formalization
of the industrial-grade
HDL FIRRTL within Coq

Artifacts available
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Perspectives — 1/2

Making verification more accessible:
• Port our Kôika verification framework for COQQTL
• Automatically deriving proof obligations from annotations

Verifying more complex examples:
• Building up from processors like the Kôika one to more complex ones14
• Considering more complex security mechanisms, such as capabilities15

14https://github.com/chipsalliance/rocket-chip
15https://github.com/CTSRD-CHERI/sail-cheri-riscv
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Perspectives — 2/2
Build a verified SMT binding to preserve the trusted computing base.

COQQTL
design IRR

Property IRR
property

SMT query

Extracted
SMT query

Proof
trace

SMT solver

SMTCoq?

Coq
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Thank you!
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