Formalizing Hardware Security Mechanisms

or “A Generic Framework to Develop and Verify Security Mechanisms at the
Microarchitectural Level: Application to Control-Flow Integrity”
Matthieu Baty!3, Pierre Wilke!, Guillaume Hiet!, Arnaud Fontaine?, Alix Trieu?

1CIDRE, CentraleSupélec Rennes, Inria, 2ANSSI
3Currently visiting student at the SystemF lab (EPFL)

July 12th, 2023

Gy

CentraleSupélec

1/23

Motivation: a stack of abstractions

The security of a layer depends on
the correctness of all those below it.

Operating System
e.g. seL4 (formal v)

The microarchitecture is the lowest
common denominator.

2/23

Context

We want to:

3/23

Context

CPU

We want to:

» Develop RISC-V processors. . .

3/23

Context

We want to:

» Develop RISC-V processors. . . with security mechanisms!

3/23

Context

We want to:
» Develop RISC-V processors. . . with security mechanisms!

» Describe the properties that our mechanisms enforce (formal specification)

3/23

Context

We want to:
» Develop RISC-V processors. . . with security mechanisms!
» Describe the properties that our mechanisms enforce (formal specification)

» Certify that our implementation is correct w.r.t. the specification (formal proof)

3/23

In short

We build a formal verification framework for a Hardware Description Language.

4/23

In short

We build a formal verification framework for a Hardware Description Language.

We are able to:

4/23

In short

We build a formal verification framework for a Hardware Description Language.

Kéika design

We are able to:

» Develop hardware with a formal HDL

4/23

In short

We build a formal verification framework for a Hardware Description Language.

Koika design
* Formal
proof We are able to:
Security » Develop hardware with a formal HDL
properties » Reason about its behavior

4/23

In short

We build a formal verification framework for a Hardware Description Language.

Semantic
equivalence

Kéika design

4

Verified compiler i

‘ Formal
- proof

We are able to:
» Develop hardware with a formal HDL

» Reason about its behavior

» Simulate/synthesize it

4/23

In short

We build a formal verification framework for a Hardware Description Language.

Kéika design

Semantic
equivalence

4

Verified compiler i

‘ Formal
- proof

Bitstream
generator

We are able to:
» Develop hardware with a formal HDL
» Reason about its behavior

» Simulate/synthesize it

Y

Bitstream

FPGA

4/23

Outline

@ The Koika language

@® Implementing and specifying a shadow stack in Kéika

© A verification framework

5/23

Outline

@ The Koika language

6/23

The Kbéika project

Kéika design

Semantic
equivalence

Verified compiler -

Verilog design

Bitstream
generator

The Essence of BlueSpec, PLDI'20, Thomas Bourgeat et al.
https://github.com/mit-plv/koika

A Hardware Description Language embedded in Coq.

Bitstream

FPGA

6/23

https://github.com/mit-plv/koika

The Kéika HDL

Kéika is a rule-based register-transfer level language:
» Hardware is described as a set of rules
» During each cycle, all rules are scheduled to be executed
» The semantics treats the rules sequentially . ..
» ... but the compiler ensures that everything runs in parallel in the end
>

A rule may be cancelled in the presence of conflicts

7/23

High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

—p

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

—p

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

High-level example: a pipelined processor

Fetch — Decode — Execute

—p

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback

8/23

The processor

The Kbéika developers actually provide such a processor (RISC-V):
» Embedded-class (4-stage pipeline, RV32l, unprivileged, no interrupts)
» 1000 lines of code
» Can run on FPGAs
» Not formally verified

We will extend this processor with a certified security mechanism.

9/23

Outline

@® Implementing and specifying a shadow stack in Kéika

10/23

Motivation: return-oriented programming

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

The stack stores information about the active
functions.

10/23

Motivation: return-oriented programming

stack
frame

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

2 local variables

Function calls push the appropriate data on the
stack.

10/23

Motivation: return-oriented programming

stack
frame

stack
frame

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

2 local variables

Function calls push the appropriate data on the
stack.

10/23

Motivation: return-oriented programming

stack
frame

stack
frame

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

2 local variables

When a function returns, we jump back to the
address stored on the stack. ..

10/23

Motivation: return-oriented programming

stack
frame

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

2 local variables

...and the stack is popped.

10/23

Motivation: return-oriented programming

Stack
f1 parameters) . .
: Code can overwrite the stack, sometimes with
stack f dd lici)
frame return address malicious intents.
What happens when a return is reached?

f1 local variables

f2 parameters

stack injected return address
frame

2 local variables

10/23

Motivation: return-oriented programming

Stack
f1 parameters .
stack System compromised!
f1 return address ; . :
frame Let's start again but with a shadow stack

f1 local variables (a la Intel CET).

f2 parameters

stack | | ;e cted return address
frame

2 local variables

10/23

Shadow stack — principle

Stack

f1 parameters

This time, we copy return addresses in a program
invisible memory.

f1 return address

f1 local variables Shadow Stack

f1 return address

11/23

Shadow stack — principle

Stack

f1 parameters

This time, we copy return addresses in a program
invisible memory.

f1 return address

f1 local variables Shadow Stack

f2 parameters f1 return address

Y

f2 return address - f2 return address

f2 local variables

11/23

Shadow stack — principle

Stack

f1 parameters

This time, we copy return addresses in a program
invisible memory.

f1 return address

f1 local variables Shadow Stack

f2 parameters f1 return address

Y

f2 return address < f2 return address

2 local variables

11/23

Shadow stack — principle

Stack

f1 parameters

On a function return, we ensure that both stacks
agree about the return address.

f1 return address

f1 local variables Shadow Stack

f2 parameters f1 return address

Y

f2 return address < f2 return address

2 local variables

11/23

Shadow stack — principle

Stack

f1 parameters

On a function return, we ensure that both stacks
agree about the return address.

f1 return address

f1 local variables Shadow Stack

f2 parameters f1 return address

Y

f2 return address < f2 return address

2 local variables

11/23

Shadow stack — principle

Stack
f1 parameters If they do, we don't have to do anything.

f1 return address

f1 local variables Shadow Stack

f2 parameters f1 return address

Y

f2 return address - f2 return address

f2 local variables

11/23

Shadow stack — principle

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

injected return address

But what if they don't?

Shadow Stack

f1 return address

f2 local variables

Y

f2 return address

11/23

Shadow stack — principle

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

injected return address

But what if they don't?

Shadow Stack

f1 return address

f2 local variables

Y

f2 return address

11/23

Shadow stack — principle

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

injected return address

But what if they don't?

Shadow Stack

f1 return address

f2 local variables

Y

f2 return address

11/23

Shadow stack — principle

Stack Issue detected!

f1 parameters We handle it,

£1 return address e.g. by halting the processor and notifying the OS.

f1 local variables Shadow Stack
f2 parameters f1 return address
X
injected return address |« > {2 return address

f2 local variables

11/23

Shadow stack — implementation

Our shadow stack lives in a program-invisible secondary memory of limited size
All accesses happen implicity on function calls/returns

>
>
» When a violation is detected, we halt the processor (remember, no interrupts)
» No support for context switching

>

Less than 100 additional lines of code

12/23

Shadow stack — specification

The properties we want to prove

13/23

Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
— the processor halts

13/23

Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow Shadow stack buffer underflow
— the processor halts — the processor halts

13/23

Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow Shadow stack buffer underflow
— the processor halts — the processor halts

Return to a modified return address
— the processor halts

13/23

Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
— the processor halts

Shadow stack buffer underflow
— the processor halts

Return to a modified return address
— the processor halts

None of the above
— the behavior is preserved

cPu ~n

13/23

Proving properties of Koika designs

Semantic
equivalence

Verified compiler i

14/23

Proving properties of Koika designs

Semantic
equivalence

Verified compiler i

Formal
- proof

14/23

Proving properties of Koika designs

Semantic
equivalence

Verified compiler i

Formal
- proof

Not so easy. ..

14/23

Problems with proofs on Kéika designs

Performance! For non-trivial designs, most tactics take minutes to hours and consume
an absurd amount of RAM.

No single cause, combination of:
» Rigidity of Coq's evaluation tactics

» Complexity of Koika's semantics
> ...

15/23

Outline

© A verification framework

16 /23

Proofs on Kbéika designs

Somewhat counter-intuitively, compiling high-level Koika designs into a lower-level
representation facilitates proofs.

Semantic
equivalence

Verified compiler]

Formal
- proof

16 /23

Proofs on Kbéika designs

Somewhat counter-intuitively, compiling high-level Koika designs into a lower-level

representation facilitates proofs.
Semantic
equivalence

Koika design

Verified compiler i

A
Semantic | Verified
Equivalence | compiler
Y Y
Intermediate Formal proof

representation

16 /23

Intermediate Reasoning Representation (IRR)

IRR:
» Is a representation of how register values are updated during a cycle.

» Consists of:

» A list of variables.
> A mapping from registers to the variables which describe their values at the

end of a cycle.
» Conflicts management is encoded explicitly in these expressions.

We prove the compiler from Kéika to IRR correct.

17/23

IRR isn't enough

The compiler is efficient, however it tends to produce large sets of deep expressions:
» Control logic is explicit

» The model is large

Furthermore, the values of the registers is usually symbolic.

Formal reasoning is still impractical. . .

18/23

Efficient proofs with IRR

We implement a generic collection of verified transformations on IRRs, akin to
standard compilers passes:

» Constants propagation

» Replacement of variables with an arbitrary expression proven equivalent
» Hypothesis application

> ...

These transformations can be applied manually by the user or using automatic
tactics.

19/23

Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

Registers : {a, b}.
Rule rl =
let x := read a in 3*2
let y := read b in 1 3 —
if x == 0 then 2 b
write b (y - vy) 3 vy == 0
else 4 Vs - Vo
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if v3 then a else vg
8 (b) | if v3 then v4 else v

20/23

Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

Q
Registers : {a, b}. %0
“
Rule rl = &
let x := read a in _E' E
let y := read b in 1 3
if x == 0 then 2 b
write b (y - vy) 3 vi ==0
else 4 Vo - o
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if v3 then a else vg
8 (b) | if v3 then vy else vg

20/23

Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

o g
Registers : {a, b}. @0 %
_ PR
Rule rl 2 5|5
let x := read a in = & |6
let y := read b in 1 a 0
if x == 0 then 2 b
write b (v - vy) 3 vi ==0
else 4 Vo - Vo
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if v then a else v
8 (b) | if v3 then v4 else vs

20/23

Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

o g
Registers : {a, b}. ai)o e)
| 0
R o,
— (] o]
Rule rl f—f é’ a =
. ‘= g | = o
let x := read a in = A | &)
let y := read b in 1 a 0
if x == 0 then 2 b
write b (y - v) 3 vi ==0
else 4 V2 - Vo
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if vz then a else vg
8 (b) | if v3 then v4 else vs if v3 then v else 1

20/23

Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

o g
Registers : {a, b}. ai)o &) >
| e 0 “
— (o (=]
— (] o] —
Rule rl E é % :.o' %‘
let x := read a in = A | ad S n
let y := read b in 1 a 0
if x == 0 then 2 b
write b (y - v) 3 vi ==0
else 4 V2 - V2
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if vz then a else vg
8 (b) | if v3 then v4 else vs if v3 then v else 1

20/23

Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

8o +
Registers : {a, b}. % o & 9 &
_ S g 3 &3
Rule ril ‘g 'EL a g" 3 %
let x := read a in = s S @ S &
let v := read b in 1 a 0
if x == 0 then 2 b
write b (v - y) 3 vy ==
else 4 Vo - Vo
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if v3 then a else vg
8 (b) | if v3 then vy else vs if v3 then vy else 1

20/23

Conclusion

Semantic
equivalence
- - - - - - - - —— >
Kaéika design Verilog design
Verified compiler
)
Semantic! | Verified
Equivalence | compiler

v

Int diat Formal proof Securit
ntermediate IRR1 IRR2 IRR. .. IRRn |~ .

representation |« - - »| e - - > e - - > e - - > properties

We are able to:
» Develop hardware with the Kéika HDL
» Reason about its behavior (in particular, we proved our security mechanism
correct!)
» Simulate it
» Synthesize it (the resulting processor runs on an actual FPGA board)

21/23

Future work

» Other security mechanisms (e.g. memory protection, privilege levels)
» Functional correctness wrt. Sail semantics

» Try to improve modularity

» Generalization of the IRR

22/23

Thank youl

	The Kôika language
	Implementing and specifying a shadow stack in Kôika
	A verification framework

