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Motivation: a stack of abstractions

The security of a layer depends on
the correctness of all those below it.

Operating System
e.g. seL4 (formal v)

The microarchitecture is the lowest
common denominator.
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Context

We want to:
» Develop RISC-V processors. . . with security mechanisms!
» Describe the properties that our mechanisms enforce (formal specification)

» Certify that our implementation is correct w.r.t. the specification (formal proof)
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Bitstream
generator

We are able to:
» Develop hardware with a formal HDL
» Reason about its behavior

» Simulate/synthesize it
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Outline

@ The Koika language

@® Implementing and specifying a shadow stack in Kéika

© A verification framework
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The Kbéika project

Kéika design

Semantic
equivalence

Verified compiler -

Verilog design

Bitstream
generator

The Essence of BlueSpec, PLDI'20, Thomas Bourgeat et al.
https://github.com/mit-plv/koika

A Hardware Description Language embedded in Coq.

Bitstream

FPGA
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https://github.com/mit-plv/koika

The Kéika HDL

Kéika is a rule-based register-transfer level language:
» Hardware is described as a set of rules
» During each cycle, all rules are scheduled to be executed
» The semantics treats the rules sequentially . ..
» ... but the compiler ensures that everything runs in parallel in the end
>

A rule may be cancelled in the presence of conflicts
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High-level example: a pipelined processor

Fetch —

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Decode

—p

Execute

—p

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback
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High-level example: a pipelined processor

Fetch — Decode — Execute

—p

One stage = one rule

The stages communicate through buffers (FIFOs of size 1)

Writing to a full FIFO is considered a conflict

Rules are skipped on cycles on which their inclusion would lead to conflicts

Consequence: the stalling behavior is implicit!

Writeback
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The processor

The Kbéika developers actually provide such a processor (RISC-V):
» Embedded-class (4-stage pipeline, RV32l, unprivileged, no interrupts)
» 1000 lines of code
» Can run on FPGAs
» Not formally verified

We will extend this processor with a certified security mechanism.
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Outline

@® Implementing and specifying a shadow stack in Kéika
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Motivation: return-oriented programming

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

The stack stores information about the active
functions.
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Motivation: return-oriented programming

stack
frame

stack
frame

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

2 local variables

When a function returns, we jump back to the
address stored on the stack. ..
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Motivation: return-oriented programming

stack
frame

stack
frame

Stack

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

2 local variables

...and the stack is popped.
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Motivation: return-oriented programming

Stack
f1 parameters ) . .
: Code can overwrite the stack, sometimes with
stack f dd lici )
frame return address malicious intents.
What happens when a return is reached?

f1 local variables

f2 parameters

stack injected return address
frame

2 local variables
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Motivation: return-oriented programming

Stack
f1 parameters .
stack System compromised!
f1 return address ; . :
frame Let's start again but with a shadow stack

f1 local variables (a la Intel CET).

f2 parameters

stack | | ;e cted return address
frame

2 local variables
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Shadow stack — principle

Stack

f1 parameters

This time, we copy return addresses in a program
invisible memory.

f1 return address

f1 local variables Shadow Stack

f1 return address
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Shadow stack — principle

Stack
f1 parameters If they do, we don't have to do anything.

f1 return address

f1 local variables Shadow Stack

f2 parameters f1 return address

Y

f2 return address - f2 return address

f2 local variables
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Shadow stack — principle

Stack Issue detected!

f1 parameters We handle it,

£1 return address e.g. by halting the processor and notifying the OS.

f1 local variables Shadow Stack
f2 parameters f1 return address
X
injected return address |« > {2 return address

f2 local variables
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Shadow stack — implementation

Our shadow stack lives in a program-invisible secondary memory of limited size
All accesses happen implicity on function calls/returns

>
>
» When a violation is detected, we halt the processor (remember, no interrupts)
» No support for context switching

>

Less than 100 additional lines of code
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Shadow stack — specification

The properties we want to prove
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Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
— the processor halts

Shadow stack buffer underflow
— the processor halts

Return to a modified return address
— the processor halts

None of the above
— the behavior is preserved

cPu ~n
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Proving properties of Koika designs

Semantic
equivalence

Verified compiler i
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Proving properties of Koika designs

Semantic
equivalence

Verified compiler i

Formal
- proof

Not so easy. ..
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Problems with proofs on Kéika designs

Performance! For non-trivial designs, most tactics take minutes to hours and consume
an absurd amount of RAM.

No single cause, combination of:
» Rigidity of Coq's evaluation tactics

» Complexity of Koika's semantics
> ...
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Outline

© A verification framework
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Proofs on Kbéika designs

Somewhat counter-intuitively, compiling high-level Koika designs into a lower-level
representation facilitates proofs.

Semantic
equivalence

Verified compiler ]

Formal
- proof
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Proofs on Kbéika designs

Somewhat counter-intuitively, compiling high-level Koika designs into a lower-level

representation facilitates proofs.
Semantic
equivalence

Koika design

Verified compiler i

A
Semantic | Verified
Equivalence | compiler
Y Y
Intermediate Formal proof

representation
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Intermediate Reasoning Representation (IRR)

IRR:
» Is a representation of how register values are updated during a cycle.

» Consists of:

» A list of variables.
> A mapping from registers to the variables which describe their values at the

end of a cycle.
» Conflicts management is encoded explicitly in these expressions.

We prove the compiler from Kéika to IRR correct.
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IRR isn't enough

The compiler is efficient, however it tends to produce large sets of deep expressions:
» Control logic is explicit

» The model is large

Furthermore, the values of the registers is usually symbolic.

Formal reasoning is still impractical. . .
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Efficient proofs with IRR

We implement a generic collection of verified transformations on IRRs, akin to
standard compilers passes:

» Constants propagation

» Replacement of variables with an arbitrary expression proven equivalent
» Hypothesis application

> ...

These transformations can be applied manually by the user or using automatic
tactics.
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Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

Registers : {a, b}.
Rule rl =
let x := read a in 3*2
let y := read b in 1 3 —
if x == 0 then 2 b
write b (y - vy) 3 vy == 0
else 4 Vs - Vo
(write b 1; write a 2). 5 1
6 2
Schedule : [rl]. 7 (a) | if v3 then a else vg
8 (b) | if v3 then v4 else v
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Conclusion

Semantic
equivalence
- - - - - - - - —— >
Kaéika design Verilog design
Verified compiler
)
Semantic! | Verified
Equivalence | compiler

v

Int diat Formal proof Securit
ntermediate IRR1 IRR2 IRR. .. IRRn |~ .

representation |« - - »| e - - > e - - > e - - > properties

We are able to:
» Develop hardware with the Kéika HDL
» Reason about its behavior (in particular, we proved our security mechanism
correct!)
» Simulate it
» Synthesize it (the resulting processor runs on an actual FPGA board)
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Future work

» Other security mechanisms (e.g. memory protection, privilege levels)
» Functional correctness wrt. Sail semantics

» Try to improve modularity

» Generalization of the IRR
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Thank youl
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