
Formalizing Hardware Security Mechanisms
or “A Generic Framework to Develop and Verify Security Mechanisms at the

Microarchitectural Level: Application to Control-Flow Integrity”

Matthieu Baty1,3, Pierre Wilke1, Guillaume Hiet1, Arnaud Fontaine2, Alix Trieu2

1CIDRE, CentraleSupélec Rennes, Inria, 2ANSSI
3Currently visiting student at the SystemF lab (EPFL)

July 12th, 2023

1 / 23



Motivation: a stack of abstractions

Program
e.g. CompCert (formal ✓)

Operating System
e.g. seL4 (formal ✓)

Instruction Set Architecture
e.g. Sail RISC-V (formal ✓)

Microarchitecture
e.g. Verilog (not formal ✗)

The security of a layer depends on
the correctness of all those below it.

The microarchitecture is the lowest
common denominator.

2 / 23



Context

We want to:

▶ Develop RISC-V processors. . .
▶ Describe the properties that our mechanisms enforce (formal specification)
▶ Certify that our implementation is correct w.r.t. the specification (formal proof)

3 / 23



Context

We want to:
▶ Develop RISC-V processors. . .

▶ Describe the properties that our mechanisms enforce (formal specification)
▶ Certify that our implementation is correct w.r.t. the specification (formal proof)

3 / 23



Context

We want to:
▶ Develop RISC-V processors. . . with security mechanisms!

▶ Describe the properties that our mechanisms enforce (formal specification)
▶ Certify that our implementation is correct w.r.t. the specification (formal proof)

3 / 23



Context

We want to:
▶ Develop RISC-V processors. . . with security mechanisms!
▶ Describe the properties that our mechanisms enforce (formal specification)

▶ Certify that our implementation is correct w.r.t. the specification (formal proof)

3 / 23



Context

We want to:
▶ Develop RISC-V processors. . . with security mechanisms!
▶ Describe the properties that our mechanisms enforce (formal specification)
▶ Certify that our implementation is correct w.r.t. the specification (formal proof)

3 / 23



In short

We build a formal verification framework for a Hardware Description Language.

Kôika design Verilog design

Verified compiler

Semantic
equivalence Bitstream

Bitstream
generator

Security
properties

Formal
proof We are able to:

▶ Develop hardware with a formal HDL
▶ Reason about its behavior
▶ Simulate/synthesize it

4 / 23



In short

We build a formal verification framework for a Hardware Description Language.

Kôika design Verilog design

Verified compiler

Semantic
equivalence Bitstream

Bitstream
generator

Security
properties

Formal
proof

We are able to:

▶ Develop hardware with a formal HDL
▶ Reason about its behavior
▶ Simulate/synthesize it

4 / 23



In short

We build a formal verification framework for a Hardware Description Language.

Kôika design

Verilog design

Verified compiler

Semantic
equivalence Bitstream

Bitstream
generator

Security
properties

Formal
proof

We are able to:
▶ Develop hardware with a formal HDL

▶ Reason about its behavior
▶ Simulate/synthesize it

4 / 23



In short

We build a formal verification framework for a Hardware Description Language.

Kôika design

Verilog design

Verified compiler

Semantic
equivalence Bitstream

Bitstream
generator

Security
properties

Formal
proof We are able to:

▶ Develop hardware with a formal HDL
▶ Reason about its behavior

▶ Simulate/synthesize it

4 / 23



In short

We build a formal verification framework for a Hardware Description Language.

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Bitstream

Bitstream
generator

Security
properties

Formal
proof We are able to:

▶ Develop hardware with a formal HDL
▶ Reason about its behavior
▶ Simulate/synthesize it

4 / 23



In short

We build a formal verification framework for a Hardware Description Language.

Kôika design Verilog design

Verified compiler

Semantic
equivalence Bitstream

Bitstream
generator

Security
properties

Formal
proof We are able to:

▶ Develop hardware with a formal HDL
▶ Reason about its behavior
▶ Simulate/synthesize it

4 / 23



Outline

1 The Kôika language

2 Implementing and specifying a shadow stack in Kôika

3 A verification framework

5 / 23



Outline

1 The Kôika language

2 Implementing and specifying a shadow stack in Kôika

3 A verification framework

6 / 23



The Kôika project

Kôika design Verilog design

Verified compiler

Semantic
equivalence Bitstream

Bitstream
generator

The Essence of BlueSpec, PLDI’20, Thomas Bourgeat et al.
https://github.com/mit-plv/koika

A Hardware Description Language embedded in Coq.

6 / 23

https://github.com/mit-plv/koika


The Kôika HDL

Kôika is a rule-based register-transfer level language:
▶ Hardware is described as a set of rules
▶ During each cycle, all rules are scheduled to be executed
▶ The semantics treats the rules sequentially . . .
▶ . . . but the compiler ensures that everything runs in parallel in the end
▶ A rule may be cancelled in the presence of conflicts

7 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



High-level example: a pipelined processor

Fetch Decode Execute Writeback

▶ One stage = one rule
▶ The stages communicate through buffers (FIFOs of size 1)
▶ Writing to a full FIFO is considered a conflict
▶ Rules are skipped on cycles on which their inclusion would lead to conflicts
▶ Consequence: the stalling behavior is implicit!

8 / 23



The processor

The Kôika developers actually provide such a processor (RISC-V):
▶ Embedded-class (4-stage pipeline, RV32I, unprivileged, no interrupts)
▶ 1000 lines of code
▶ Can run on FPGAs
▶ Not formally verified

We will extend this processor with a certified security mechanism.

9 / 23



Outline

1 The Kôika language

2 Implementing and specifying a shadow stack in Kôika

3 A verification framework

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

f2 return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

The stack stores information about the active
functions.

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

f2 return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

Function calls push the appropriate data on the
stack.

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

f2 return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

Function calls push the appropriate data on the
stack.

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

f2 return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

When a function returns, we jump back to the
address stored on the stack. . .

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

f2 return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

. . . and the stack is popped.

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

injected return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

Code can overwrite the stack, sometimes with
malicious intents.
What happens when a return is reached?

10 / 23



Motivation: return-oriented programming

f1 parameters

f1 return address

f1 local variables

stack
frame

f2 parameters

injected return address

f2 local variables

stack
frame

f3 parameters

f3 return address

f3 local variables

stack
frame

Stack

System compromised!
Let’s start again but with a shadow stack
(à la Intel CET).

10 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address

Shadow Stack

Stack
This time, we copy return addresses in a program
invisible memory.

On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.But what if they don’t?
Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address

Shadow Stack

Stack
This time, we copy return addresses in a program
invisible memory.

On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.But what if they don’t?
Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address

Shadow Stack

Stack
This time, we copy return addresses in a program
invisible memory.

On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.But what if they don’t?
Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address
=?

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.

On a function return, we ensure that both stacks
agree about the return address.

If they do, we don’t have to do anything.But what if they don’t?
Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address
✓

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.

On a function return, we ensure that both stacks
agree about the return address.

If they do, we don’t have to do anything.But what if they don’t?
Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.
On a function return, we ensure that both stacks
agree about the return address.

If they do, we don’t have to do anything.

But what if they don’t?
Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return addressinjected return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address

f3 return address

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.
On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.

But what if they don’t?

Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return addressinjected return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address
=?

f3 return address

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.
On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.

But what if they don’t?

Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return addressinjected return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address
✗

f3 return address

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.
On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.

But what if they don’t?

Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — principle

f1 parameters

f1 return address

f1 local variables

f2 parameters

f2 return addressinjected return address

f2 local variables

f3 parameters

f3 return addressf3 return address

f3 local variables

f1 return address

f2 return address
✗

f3 return address

Shadow Stack

Stack

This time, we copy return addresses in a program
invisible memory.
On a function return, we ensure that both stacks
agree about the return address.
If they do, we don’t have to do anything.But what if they don’t?

Issue detected!
We handle it,
e.g. by halting the processor and notifying the OS.

11 / 23



Shadow stack — implementation

▶ Our shadow stack lives in a program-invisible secondary memory of limited size
▶ All accesses happen implicity on function calls/returns
▶ When a violation is detected, we halt the processor (remember, no interrupts)
▶ No support for context switching
▶ Less than 100 additional lines of code

12 / 23



Shadow stack — specification

The properties we want to prove

13 / 23



Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
=⇒ the processor halts

13 / 23



Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
=⇒ the processor halts

Shadow stack buffer underflow
=⇒ the processor halts

13 / 23



Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
=⇒ the processor halts

Shadow stack buffer underflow
=⇒ the processor halts

Return to a modified return address
=⇒ the processor halts

13 / 23



Shadow stack — specification

The properties we want to prove

Shadow stack buffer overflow
=⇒ the processor halts

Shadow stack buffer underflow
=⇒ the processor halts

Return to a modified return address
=⇒ the processor halts

None of the above
=⇒ the behavior is preserved

13 / 23



Proving properties of Kôika designs

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Security
properties

Formal
proof

Not so easy. . .

14 / 23



Proving properties of Kôika designs

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Security
properties

Formal
proof

Not so easy. . .

14 / 23



Proving properties of Kôika designs

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Security
properties

Formal
proof

Not so easy. . .

14 / 23



Problems with proofs on Kôika designs

Performance! For non-trivial designs, most tactics take minutes to hours and consume
an absurd amount of RAM.

No single cause, combination of:
▶ Rigidity of Coq’s evaluation tactics
▶ Complexity of Kôika’s semantics
▶ . . .

15 / 23



Outline

1 The Kôika language

2 Implementing and specifying a shadow stack in Kôika

3 A verification framework

16 / 23



Proofs on Kôika designs

Somewhat counter-intuitively, compiling high-level Kôika designs into a lower-level
representation facilitates proofs.

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Security
properties

Formal
proof

Intermediate
representation

Security
properties

Formal proof

Verified
compiler

Semantic
Equivalence

16 / 23



Proofs on Kôika designs

Somewhat counter-intuitively, compiling high-level Kôika designs into a lower-level
representation facilitates proofs.

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Intermediate
representation

Security
properties

Formal proof

Verified
compiler

Semantic
Equivalence

16 / 23



Intermediate Reasoning Representation (IRR)

IRR:
▶ Is a representation of how register values are updated during a cycle.
▶ Consists of:

▶ A list of variables.
▶ A mapping from registers to the variables which describe their values at the

end of a cycle.

▶ Conflicts management is encoded explicitly in these expressions.

We prove the compiler from Kôika to IRR correct.

17 / 23



IRR isn’t enough

The compiler is efficient, however it tends to produce large sets of deep expressions:
▶ Control logic is explicit
▶ The model is large

Furthermore, the values of the registers is usually symbolic.

Formal reasoning is still impractical. . .

18 / 23



Efficient proofs with IRR

We implement a generic collection of verified transformations on IRRs, akin to
standard compilers passes:
▶ Constants propagation
▶ Replacement of variables with an arbitrary expression proven equivalent
▶ Hypothesis application
▶ . . .

These transformations can be applied manually by the user or using automatic
tactics.

19 / 23



Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

In
iti

al

1 a
2 b
3 v1 == 0
4 v2 - v2

5 1
6 2

7 (a) if v3 then a else v6

8 (b) if v3 then v4 else v5

20 / 23



Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

In
iti

al

Pr
un

e
(r

eg
b)

1 a
2 b
3 v1 == 0
4 v2 - v2

5 1
6 2

7 (a) if v3 then a else v6

8 (b) if v3 then v4 else v5

20 / 23



Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

In
iti

al

Pr
un

e
(r

eg
b)

Ex
pl

oi
tR

eg

1 a 0
2 b
3 v1 == 0
4 v2 - v2

5 1
6 2

7 (a) if v3 then a else v6

8 (b) if v3 then v4 else v5

20 / 23



Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

In
iti

al

Pr
un

e
(r

eg
b)

Ex
pl

oi
tR

eg

Co
ll

ap
se

1 a 0
2 b
3 v1 == 0 0 == 0
4 v2 - v2 b - b
5 1
6 2

7 (a) if v3 then a else v6

8 (b) if v3 then v4 else v5 if v3 then v4 else 1

20 / 23



Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

In
iti

al

Pr
un

e
(r

eg
b)

Ex
pl

oi
tR

eg

Co
ll

ap
se

Si
mp

li
fy

1 a 0
2 b
3 v1 == 0 0 == 0 1
4 v2 - v2 b - b
5 1
6 2

7 (a) if v3 then a else v6

8 (b) if v3 then v4 else v5 if v3 then v4 else 1

20 / 23



Example

We want to prove that when the initial value of a is 0, the final value of b is 0.

In
iti

al

Pr
un

e
(r

eg
b)

Ex
pl

oi
tR

eg

Co
ll

ap
se

Si
mp

li
fy

Co
ll

ap
se

+
Si

mp
li

fy

1 a 0
2 b
3 v1 == 0 0 == 0 1
4 v2 - v2 b - b
5 1
6 2

7 (a) if v3 then a else v6

8 (b) if v3 then v4 else v5 if v3 then v4 else 1 b - b

20 / 23



Conclusion

Kôika design Verilog design

Verified compiler

Semantic
equivalence

Intermediate
representation IRR1 IRR2 IRR. . . IRRn

Security
properties

Formal proof

Verified
compiler

Semantic
Equivalence

We are able to:
▶ Develop hardware with the Kôika HDL
▶ Reason about its behavior (in particular, we proved our security mechanism

correct!)
▶ Simulate it
▶ Synthesize it (the resulting processor runs on an actual FPGA board)

21 / 23



Future work

▶ Other security mechanisms (e.g. memory protection, privilege levels)
▶ Functional correctness wrt. Sail semantics
▶ Try to improve modularity
▶ Generalization of the IRR

22 / 23



Thank you!


	The Kôika language
	Implementing and specifying a shadow stack in Kôika
	A verification framework

