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Abstract—In recent years, the disclosure of several significant
security vulnerabilities has revealed the trust put in some
presumed security properties of commonplace hardware to be
misplaced. We propose to design hardware systems with security
mechanisms, together with a formal statement of the security
properties obtained, and a machine-checked proof that the
hardware security mechanisms indeed implement the sought-for
security property.

Formally proving security properties about hardware systems
might seem prohibitively complex and expensive. In this paper,
we tackle this concern by designing a realistic and accessible
methodology on top of the Kôika Hardware Description Lan-
guage for specifying and proving security properties during
hardware development. Our methodology is centered around a
verified compiler from high-level and inefficient to work with
Kôika models to an equivalent lower-level representation, where
side effects are made explicit and reasoning is convenient.

We apply this methodology to a concrete example: the formal
specification and implementation of a shadow stack mechanism
on an RV32I processor. We prove that this security mechanism
is correct, i.e., any illegal modification of a return address
does indeed result in the termination of the whole system.
Furthermore, we show that this modification of the processor
does not impact its behaviour in other, unexpected ways.

Index Terms—RISC-V, Formal Methods, Hardware Verifica-
tion, Compilation
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I. INTRODUCTION

Formal methods can be used to build trust in computer
systems. The CompCert C compiler [20] or the seL4 microker-
nel [18] are examples of their successful application to soft-
ware verification. Formal verification of hardware was histori-
cally mostly confined to functional correctness, as exemplified
by the formal verification of the floating-point operations in
Intel hardware following the discovery of the Pentium FDIV
bug [17], or by the verification of protocols, e.g. for cache
coherence [31].

However, hardware components also play a fundamental
role in establishing security and trust in the whole hardware/-

software stack. Being at the lowest level of the stack, they pose
several challenges (e.g. complex interactions with software and
difficulty for patching) and open many opportunities (e.g. for
providing a sound foundation for software security, protected
from modifications incurred by software execution) in terms
of security. Formal methods should help with developing a
set of formally defined and verified security primitives at the
hardware level. Despite this central position in the security
foundation of computing platforms, the adoption of formal
methods for hardware security is still limited. As stated by
several experts of the domain in the 2016 Report on the NSF
Workshop on Formal Methods for Security, there is a critical
need for ”methods to create, analyze, and execute formal hard-
ware security specifications” and ”new security mechanisms
are needed to ease the creation and verification of higher-
level system security properties” [8]. Establishing security
properties at the hardware level is also a mandatory stepping
stone towards whole-system guarantees. In this article, we
propose a solution to this main challenge: providing a solid,
scalable and generic foundation for implementing and proving
hardware security mechanisms at the microarchitectural level.

Some promising approaches for formally specifying
hardware-based security mechanisms and proving that they
enforce some security properties have been proposed in the
research community. For example, CHERI [32] is an extended
version of the Arm ISA, which includes constructs for fine-
grained memory protection with capabilities. Recently, the use
of these capabilities (the security mechanism) in the Morello
architecture was shown to enforce memory protection (the
security property) [4], [24]. These properties were proved at
the ISA (Instruction Set Architecture) level. However, we aim
at reasoning at the microarchitectural level for two reasons.
First, the ISA level prevents us from capturing low-level
implementation details that may induce vulnerabilities, e.g.
side channels. Second, the security properties proved at the
ISA level still rely on the correct implementation of this ISA
by a microarchitectural model.



Some works in formal methods for hardware verifica-
tion [1], [6], [15], [21] are based on models of the actual
hardware. While this makes proofs easier to come up with, this
also opens a possibility for discrepancies between the model
and the actual hardware, thus giving a false sense of security.

A way of avoiding this issue would be to reason directly
on the model used for production. However, most Hardware
Description Languages (HDLs) used in industrial settings are
not equipped with formal semantics, and formal proof cannot
directly be applied on the models written in these HDLs.

The challenge we tackle in this article is the following:
how to provide a solid, scalable and generic foundation for
implementing and proving hardware security mechanisms at
the microarchitectural level?

This article proposes a realistic and accessible methodology
for specifying and proving security properties during hardware
development. We base our work on the Kôika language [5],
a HDL embedded in the Coq proof assistant. This language
comes with a compiler that produces Verilog code, which
can be synthesized for FPGA boards. The Kôika project also
provides a 4-stage RISC-V processor, among several examples
of Kôika models.

The Kôika compiler is formally verified, which means that
the compilation of Kôika models down to Verilog preserves
their semantics. However, the authors of Kôika do not provide
scalable tools for proving non-trivial security properties on
Kôika models. Moreover, naive attempts at reasoning directly
on complex models written in Kôika, e.g., on a RISC-V
processor, lead to prohibitive performance issues due to the
large size of the terms manipulated by Coq, among other
things.

To overcome these shortcomings, we expand upon the Kôika
language. First, we introduce a low-level representation which
is better suited to formal reasoning and enables interactive
proof on hardware models. We propose a compiler from
Kôika models to this low-level representation and prove that
this compiler preserves semantics, i.e. properties about the
Kôika model can be proved by reasoning about the low-
level representation. Then, we develop a library of verified
transformation passes over these representations in order to
ease reasoning. For instance, we offer transformation passes
to exploit hypotheses about the values of some registers at the
beginning of a cycle or to replace arithmetic operations with
their results when enough of their arguments are known. A
mix of transformation passes applications and case analysis is
sufficient to discharge the goals we are interested in.

We rely on our methodology to verify that a security
mechanism targeting the aforementioned Kôika RISC-V model
enforces some security policies. More precisely, we prove that
a hardware-based return address shadow stack (the security
mechanism) prevents the modification of return addresses
(the security property), which guards against arbitrary code
execution.

Our contributions can be summarized as follows:
• We propose a methodology and a framework based on

Kôika to specify and implement security mechanisms and

the security properties they are supposed to enforce;
• We define a low-level representation for Kôika that is

more amenable to verification;
• We design a series of code transformations that simplify

the models;
• We showcase this methodology on a hardware-based

shadow stack security mechanism, and prove that it
indeed enforces the integrity of return addresses, and
does not affect the legitimate behaviour of the computer
system;

• We synthesize the aforementioned processor equipped
with a hardware shadow stack and run it successfully
on an FPGA board.

Our contributions have been mechanised in Coq and are
available at: https://gitlab.inria.fr/cidre-public/koika-llr.

The rest of this article is organized as follows. Section II
introduces the Kôika language [5] and its semantics, showing
the challenges that have to be overcome for formal verifica-
tion. Section III, the main part of this work, introduces our
proposed framework and proof methodology. In particular,
we detail the modifications we implemented in the Kôika
project. Section IV showcases an application of this method-
ology to the implementation of a verified hardware shadow
stack. Section V presents the experimental evaluation of our
solution. Section VI position our approach against related
work. Section VII discusses limitations and future work, and
Section VIII concludes this article.

II. KÔIKA

Kôika [5] is an open-source formal Hardware Description
Language (HDL). Being embedded in Coq, this language
provides a sound basis for reasoning about the behaviour of
hardware models. Kôika is based on BlueSpec [25], a general-
purpose, high-level, non-formal HDL. The distinctive feature
of Bluespec, compared to other traditional HDLs such as
Verilog or VHDL, is that the model is expressed in rules
that should run concurrently, and it is the compiler’s duty to
automatically generate the control logic that ensures rules do
not conflict. This way of describing hardware is particularly
convenient for concurrent systems such as pipelined proces-
sors.

The Kôika compiler is formally verified and outputs Verilog
code. One can thus apply Verilog-compatible tools (e.g.,
simulators and FPGA bitstream generators) to Kôika models.
Efficient simulation is possible using the project’s custom
simulator “Cuttlesim” [26] directly on Kôika models rather
than traditional Verilog simulators. Kôika lends itself better to
efficient simulation than Verilog because its form is close to
regular software, which allows for the application of standard
software optimization techniques.

A. The Kôika language

1) Syntax: The syntax of Kôika programs is given by
Figure 1. A Kôika program manipulates a set of registers,
that form the microarchitectural state. Programs are composed
of a set of rules and a schedule that determines the order in

https://gitlab.inria.fr/cidre-public/koika-llr


Actions a ::= v | x | skip
| read r | write r a
| let x = a in a
| x := a
| if a then a else a
| f(a, . . . , a) | a; a
| abort

Registers r
Variables x

Program P ::= [rule name = a]∗
+ schedule = −−−→name

Values val ::= ~b | {(k : val)∗} | {val∗} | enum val

Types τ ::= Bits n | Struct [(k, τ)∗]
| Array n τ | Enum [variant∗]

Fig. 1: Syntax of Kôika models

which rules should appear to execute. The rules are atomic
actions describing transitions from one clock cycle to the next.
Each rule approximately maps to one stage of a pipelined
processor. Note that the hardware circuit will execute the rules
concurrently during one single cycle, but the schedule helps
to define their semantics as if they were executed sequentially.

Kôika actions produce values val , which can be bitvectors,
structures, arrays or enums (see Figure 1). Each of these values
is given a type, which describes respectively the size of the
bitvector, the layout of the structure, the set of values of the
enum and the type and number of elements of the array.

Actions can be constant values val , variables x, skip

actions which do nothing, read of registers read r, write
of values to registers write r a, variables bindings with
the let .. in .. construct, variable assignments with the
x := a construct, conditional expressions with the construct
if .. then .. else .., function calls (f(..)), sequences of
actions and abort actions which always fail. Function calls
can be internal (defined themselves in terms of actions) or
external (their semantics is given by global parameters of the
model, and can be used e.g. to model the external RAM).

2) Semantics: The successful executions of actions produce
a value alongside a log storing a sequence of read and write
events on registers. The semantics is given in Figure 2, by
way of a set of judgments of the form Γ ` (l, a) ↓σL (l′, v,Γ′),
where Γ is an environment for let-bound variables, l is a
”rule log”, i.e. a log of events that occurred so far during
the execution of the current rule, a is the action that is to
be executed; and l′ is an updated rule log, v is the value
computed by action a and Γ′ is an updated environment. The
environment Γ is a stack of pairs (x, v) where x is a variable
name and v is the value associated with that variable. It is
updated in particular in rule BIND. We first add a binding to
the environment ((x, v1) :: Γ′), and finally remove it when
the variable goes out of scope (tl Γ′′), where tl is the

Semantics of actions:

CST
v ∈ val

Γ ` (l, v) ↓ (l, v,Γ)

VAR
Γ(x) = v

Γ ` (l, x) ↓ (l, v,Γ)

BIND
Γ ` (l, a1) ↓ (l′, v1,Γ

′)
(x, v1) :: Γ′ ` (l′, a2) ↓ (l′′, v,Γ′′)

Γ ` (l, let x = a1 in a2) ↓ (l′′, v, tl Γ′′)

ASSIGN
Γ ` (l, a) ↓ (l′, v,Γ′)

Γ ` (l, x := a) ↓ (l′, tt,Γ′[x 7→ v])

COND-TRUE
Γ ` (l, a1) ↓ (l′, [true],Γ′)

Γ′ ` (l′, a2) ↓ (l′′, v,Γ′′)

Γ ` (l, if a1 then a2 else a3) ↓ (l′′, v,Γ′′)

COND-FALSE
Γ ` (l, a1) ↓ (l′, [false],Γ′)

Γ′ ` (l′, a3) ↓ (l′′, v,Γ′′)

Γ ` (l, if a1 then a2 else a3) ↓ (l′′, v,Γ′′)

FUNCALL
Γ0 ` (l0, a1) ↓ (l1, v1,Γ1)

. . . Γn−1 ` (ln−1, an) ↓ (ln, vn,Γn)
zip(args f, [v1, . . . , vn]) ` (ln, body f) ↓ (l′, v,Γ′)

Γ0 ` (l0, f(a1, . . . , an) ↓ (l′, v,Γn)

SEQ
Γ ` (l, a1) ↓ (l′, v1,Γ

′) Γ′ ` (l′, a2) ↓ (l′′, v,Γ′′)

Γ ` (l, a1 ; a2) ↓ (l′′, v,Γ′′)

READ
may read(L, r)

Γ ` (l, read r) ↓ (l++[rd(r)], σ(r),Γ)

WRITE
Γ ` (l, a) ↓ (l′, v,Γ′) may write(L, l′, r)

Γ ` (l,write r a) ↓ (l′++[wr(r, v)], tt,Γ′)

may read(L, r) , wr(r, ∗) /∈ L
may write(L, l, r) , wr(r, ∗) /∈ (L++l)

Semantics of a schedule:

Γ0 ` (l0, a) ↓σL (l, v,Γ) (L++l, sch) ⇓ L′

(L, a :: sch) ⇓ L′

Γ0 ` (l0, a) 6 ↓ σL (L, sch) ⇓ L′

(L, a :: sch) ⇓ L′ (L,[]) ⇓ L

Fig. 2: Semantics of Kôika actions and schedules



function that returns a list’s tail. The rule for function calls
creates a new environment for the called function with the zip
function that combines two lists into a list of pairs. args f
and body f give, respectively, the names of the arguments
and the body of a function f . Moreover, these judgments use
two components that are never updated in the semantics of
actions: an environment σ that gives the value of each register
at the beginning of the cycle, and a ”schedule log” L that
contains the read and write events produced by previous rules
(as defined by the schedule) during the same cycle. For the
sake of clarity, when there is no ambiguity about which σ
and L should be used, we simply write ↓ instead of the full
↓σL. The events in the schedule log and rule log are of the
form rd(r) or wr(r, v), denoting respectively a read on register
r, and a write of value v on register r. Operator ++ is the
concatenation of lists. The separation between the schedule
log and the rule log is necessary because the effects of rules
may be cancelled in the presence of conflicts between register
reads and register writes. More precisely, a conflict happens in
two situations: read-after-write (see rule READ in Figure 2),
i.e. when a read on a register happens after a write on the
same register by a previous rule (as defined by the scheduler);
or write-after-write (see rule WRITE in Figure 2), i.e. when
a write happens after another write on the same register by
a previous rule or the same rule. The conditions under which
reads and writes are permitted are decided by the may read

and may write functions. Note that reading a register after
a write has occurred within the same rule is allowed, and
results in reading the value of the register at the beginning of
the cycle.

The read-after-write conflict exists in order to respect the
One-Rule-At-A-Time (ORAAT) semantics, i.e. the parallel
execution of several rules is allowed if it cannot be distin-
guished from a sequential execution of these rules, in the order
described by the user-provided schedule. Consider the rules
A: write r1 0 and B: read r1, and assume register
r1 initially holds the value 1. With the schedule [A;B], rules
A and B cannot run concurrently. On the other hand, with the
schedule [B;A], the two rules may execute concurrently and
will result in the register r1 having value 0.

The write-after-write conflict is not necessary to sat-
isfy ORAAT, but is rather a design choice of the au-
thors of Kôika, who consider that overwriting registers by
shadowing them is an antipattern. For instance, the rule
C: write r1 1; write r2 2; write r1 3 would
write twice to the same register.

In the bottom of Figure 2, we introduce three rules that
describe the semantics of a schedule, built on top of the
semantics of actions. We run each rule with an initially empty
environment Γ0 and an empty rule log l0. We write Γ ` (l, a) 6 ↓
to denote that the execution of action a fails, i.e. does not result
in a triple (l′, v,Γ′), e.g. because of a conflict. Conflicts result
in the cancellation of all the effects of the conflicting rule. In
the example of rule C, this means that not only none of the
writes to r1 actually happen, but the write to r2 is also ignored,
because rules are considered to be atomic, i.e. execute entirely

or not at all.
These conflicts have to be detected at run-time, because

the conflicting register reads or writes may be nested inside
conditional expressions, and thus cannot be decided during
compilation.

Kôika’s compiler takes care of introducing the appropriate
control logic in the generated circuit, in order to run rules in
parallel, and only commit each rule’s effects when there are no
conflicts. Combined with scheduling, this behavior can be used
to simplify the definition of pipelined systems: conflicts help
determine how to pipeline a model without the user needing
to give all the details explicitly.

Importantly, the presence of a conflict in a rule does not
mean that something is wrong with the rule. For instance, in
the following rule, a conflict occurs only if both a and b are
equal to 0 at the beginning of a cycle (write-after-write on x).

Rule A:
if (read a == 0) then write x 0;
if (read b == 0) then write x 1.

However, in all other situations, the rule runs. The set
of rules which end up running in a given cycle depends
on the initial value of the registers. These values are stored
in an association map which we call the environment. The
constant changes in the environment throughout the execution
of a model give rise to a dynamic system. For instance, in
the context of pipelined systems such as processors, where
rules correspond to individual stages of the pipeline, rule
cancellations can represent stalls in the pipeline.

Finally, the semantics of a cycle is given by a function
interp_cycle, taking as parameters a schedule sch and
an initial state for registers σ, and producing as a result a new
state for registers. For instance interp cycle(sch, σ)(r) is
the value of register r at the end of a cycle.

3) Ports: In the language we described so far, it is not
possible to pass information from one rule to another during
a single cycle, because one rule cannot read a value written
by a previous rule. However, since this impacts performance
dramatically, it is possible in Kôika to forward data from one
rule to another through the use of ports. Ports (see Figure 3)
are simply 0 or 1 and correspond loosely to versions of the
associated register across time. Reads and writes are associated
with a specific port. One can only read the value of a register
on port 0 if no write has occurred on that register in the current
cycle, but we can read on port 1 if no write has occurred on
port 1. If a write has occurred on port 0, a read on port 1 will
retrieve the value that was written, no matter whether the read
and write occur in the same rule or successively.

The conflicts between reads and writes is now more subtle:
reads on some port p are only allowed if no write has already
occurred in a previous rule on any port p′ ≥ p. Writes on
some port p are allowed neither after writes on ports p′ ≥ p
nor after reads on ports p′ > p. This last part means that, for
example, once a read on port 1 occurred, we cannot have a
write on port 1.



Ports p ::= 0 | 1
Actions a ::= . . .

| readp r | writep r a

may read(L, r, P0) , wr(r, ∗, ∗) /∈ L
may read(L, r, P1) , wr(r, P1, ∗) /∈ L
may write(L, l, r, P0) , wr(r, ∗, ∗) /∈ (L++l)

∧ rd(r, P1) /∈ (L++l)

may write(L, l, r, P1) , wr(r, P1, ∗) /∈ (L++l)

Fig. 3: Syntax and semantics of Kôika models with added
ports

Registers : {r, r0, ..., r20}.

Rule tick :
write r0 0;
write r1 0;
...
write r20 0;
write r (read r + 1).

Schedule : [tick].

Fig. 4: A simple model with many independent writes

The notion of ports is crucial for the performance of hard-
ware designs, but it adds some complexity to the semantics of
Kôika. Ports will be ignored in the rest of this article for the
sake of simplicity. However, they are fully supported in the
implementation.

B. Limitations

Although it is possible to prove some properties about the
behavior of some simple Kôika circuits using the language
in its current state, this becomes impractical as the models
grow in complexity, for performance reasons. This issue can’t
be pinned on a single cause. Rather, it is the consequence of
design choices in the Kôika language and of properties of the
Coq language, in which the reasoning is carried out.

First, the semantics of Kôika is inherently non-modular.
Consider for instance a single register write inside one of the
rules of a Kôika model. In order to determine whether this
register write actually occurs, one needs to check whether this
rule is actually run or will be cancelled for the current cycle.
Cancellation conditions, which depend on the evaluation of
all the previous rules, can get quite involved. Not only is this
tricky to reason with, it can also degrade the performance of
proofs involving complex models.

Another limiting factor is related to the techniques for
proofs by computation in Coq. When considering the behavior
of programs with concrete inputs, efficient Coq tactics for
complete normalization such as cbv or vm_compute can
be applied. However, for programs whose inputs are not all
known, this approach amounts to complete symbolic execution

and leads all too often to a combinatorial explosion. On the
other hand, tactics such as cbn or simpl are an apt tool for
reasoning about program whose inputs are at least partially
abstract. Indeed, these tactics can be parameterized to try and
avoid running into the performance traps that would block
cbv or vm_compute. However, the existing level of control
for these tactics is not sufficient for our purposes.

We introduce an example of a Kôika model in Figure 4.
It contains a single rule with a sequence of writes, each of
which targets a different register. The model contains a total of
twenty-one registers. Real-life examples usually contain more
registers and actions than this, and include more complex
constructs (e.g. conditionals and let-defined variables). Note
that there can’t possibly be a conflict in this rule as all writes
target different registers.

Consider the following property about this model, which
says that register the initial and final values of r are distinct:

interp cycle([tick], σ)(r) 6= σ(r)

It should be rather easy to demonstrate. In fact, the first
twenty writes can safely be ignored, as they don’t have any
influence on the final value of r, which is the only register
considered in the property. The value of r is incremented on
each cycle, which means that the property is trivially true.

However, there is no straightforward way of implementing
this proof using vanilla Kôika and Coq. Even for such a simple
program and property, we did not manage to find a proof which
terminates in less than twenty minutes. This problem only gets
worse when considering larger models with more registers,
actions and complex constructs.

We present our methodology to find a way around Coq’s and
Kôika’s performance issues when reasoning on large models
in Section III.

III. PROVING SEMANTIC PROPERTIES ON KÔIKA MODELS

In order to circumvent the limitations exposed earlier, we
propose a low-level representation which makes all the compu-
tations about conflicts and rule cancellation explicit. While this
produces rather large terms, reifying these computations makes
it possible to simplify and store them. This way, for instance,
the decision of whether a rule is cancelled is computed once
for all, rather than each time we need to reason about the value
of any register.

An overview of our methodology for proving security
properties on Kôika models is given in Figure 5. In this
figure, starting from the Kôika model, we obtain a first low-
level representation (LLR) from a verified compiler that we
describe in Section III-B. Then, this LLR0 is transformed
into a sequence of LLRs, each simpler to reason about than
the previous one. Applying these transformations is part of
the proof development. It can be done either manually or
through tactics which automatically apply appropriate passes
depending on the form of the goal and of the hypotheses. Users
can easily define additional tactics tailored to their work using
Coq’s built-in facilities. We describe these transformations in



Kôika model
high-level, atomic rules

Verilog
low-level, everything parallel

∼=

LLR 0 LLR 1 LLR ... LLR n

Security properties

∼= ∼= ∼= ∼=

Fig. 5: Overall structure of our proofs on Kôika models

Low-Level Actions
lla ::= v ∈ val | vx | r | . lla | lla ./ lla

| lla ? lla : lla
Low-Level Representation
llr ::= {V : N ↪→ lla ; R : reg→ N}

Semantics of Low-Level Actions
JvKllr

σ := v (v ∈ val)
JvxKllr

σ := JaKllr
σ if llr .V (x) = bac

JrKllr
σ := σ(r)

J.llaKllr
σ := .JllaKllr

σ

Jlla1 ./ lla2Kllr
σ := Jlla1Kllr

σ ./ Jlla2Kllr
σ

Jlla1 ? lla2 : lla3Kllr
σ := Jlla1Kllr

σ 6= ~0 ? Jlla2Kllr
σ

: Jlla3Kllr
σ

Fig. 6: Syntax and semantics of low-level actions

Section III-D. Each simplification pass is formally verified,
hence the proofs we carry out on the transformed LLRs also
hold the initial LLR. Finally, the LLR n is simple enough that
we can carry out the proof of our security property directly.
Because every step in our methodology is proven to preserve
semantics, the security property we prove on LLR n also holds
for LLR n − 1, all the way up to LLR 0, but also for the
Kôika model. From Kôika’s compiler correctness, we have
that the security property holds on the Verilog code that will
be simulated or synthesized.

We propose a compiler from Kôika models to these lower-
level representations (LLR) and prove that this compiler pre-
serves semantics, i.e. properties about the Kôika model can be
proved by reasoning about the LLR. Then, we apply a series
of verified simplifications that depends on the specific goal we
try to prove.

A. A low-level representation

The type of the low-level representation we target is given
in Figure 6. A low-level representation (LLR) is composed
of a variable map V , which maps variable identifiers to
low-level actions, and a mapping R from register names to
variable identifiers. R[r] holds the identifier of the variable
that corresponds to the value of register r after one clock

cycle, whose contents can be recovered from the variable map
V .

A low-level action is a static counterpart to Kôika actions.
These low-level actions can be constant values v, variables
vx, registers r, unary operations .lla , binary operations lla ./
lla , or conditional expressions lla ? lla : lla , as illustrated in
Figure 6. The main difference, compared with Kôika actions,
is that register read and write operations have disappeared, and
actions are now free of side effects.

The low-level action associated with a variable x in our
low-level representation is allowed to reference only vari-
ables whose identifier y is strictly below x. This is a well-
formedness condition that ensures that there is no cyclic
dependency between variables. Hence, the evaluation of these
expressions terminates. We can therefore define the evaluation
function JllaKllr

σ , which evaluates a low-level action lla into
a value. It is parameterized by a low-level representation llr
(for resolving variables) and an environment σ (that holds the
initial values of registers). The definition is given in Figure 6.

Let us consider for instance the action a + v7. Its evaluation
Ja + v7Kllr

σ would be decomposed into JaKllr
σ + Jv7Kllr

σ . The
first part JaKllr

σ , i.e. the evaluation of register a will simply
be a lookup into the environment: σ(a). The second part will
lookup variable v7 in the LLR, and then recursively apply the
evaluation function on the low-level action associated with v7.

Although the representation introduced in this paper is
tailored to languages of the BlueSpec family, similar rep-
resentations can be more generally applied for controlling
partial interpretation in Coq. Indeed, as things stand, there are
situations that Coq’s interpretation tactics are unable to handle
conveniently, as detailed in II-B.

B. From Kôika rules to a Low-Level Representation

Our first objective is to build a low-level representation from
a Kôika model. We treat each rule in the Kôika model in the
order specified by the schedule. For each rule, we perform a
form of abstract interpretation on the action, as shown in the
definition of K2L in Figure 7. The parameters of the compiler
are: 1) the Kôika action a to be compiled; 2) a projection
Π : Reg + Var → N that maps Kôika variables and registers
to LLR variable identifiers; 3) a mapping V : N → lla from
variable identifiers (natural numbers) to low-level actions;
4) the next fresh variable identifier f ; 5) the current path



condition P , as a low-level action; 6) an abstract schedule
log L] and 7) an abstract rule log l]. The result of compiling
an action with K2L is a 6-tuple (lla,Π′, V ′, f ′, F, l′

]
) where

lla is the low-level action corresponding to the input Kôika
action, Π′, V ′, f ′ and l′

] are the updated values of Π,
V , f and l], and F is the action’s failure condition, i.e.
a low-level action expressing the conditions under which
the current action will fail. The abstract logs record all the
potential read and write events, together with a low-level
action representing the condition under which these read and
write events actually occurred. More precisely, abstract logs
(L] and l]) are of type {wr, rd} × Reg → lla . For example,
l](wr, r) is a low-level action that represents the conditions
under which a write has occurred on register r. The logs
are updated when compiling register reads and writes (see
Figure 7): the notation l][(k, r)

∨7−→ P ] means the mapping
l] updated for key (k, r), where the new value is old ∨ P ,
where old is the old value of the mapping for that key. The
may read] and may write] are the abstract counterpart to the
may read and may write in Kôika semantics. For instance,
may read(L, r) = wr(r, ∗) /∈ (L) (see Figure 1). The abstract
version may read](L], r) is defined as the low-level action
¬L](wr, r). The condition under which a read action fails is
exactly the negation of the result of the may read] function.
For an action write r a, it is the logical disjunction between
the negation of may write] and the failure condition associ-
ated with action a. The projection Π maps Kôika variables
and registers to LLR variable identifiers. More precisely, for
each register r, Π(r) corresponds to the variable that will hold
the final value of register r, at the end of the current cycle.
Initially, Π(r) maps to a variable that only contains the low-
level action r. When compiling a register write (see Figure 7),
the projection Π is updated so that Π(r) points to the new
value, in accordance with the semantics of Kôika.

One of the most involved cases for K2L is that of con-
ditional expressions. We construct a low-level representation
for each case of the conditional expression: one when the
condition evaluates to true, another when the condition
evaluates to false. This is materialized by the two recursive
calls to K2L, one with the path condition augmented with
the condition, the other with its negation. These two calls
generate two distinct projections Πtb and Πfb, that we merge
using the binary operator

⋃vcond

V,f . For every Kôika variable
or register k, suppose Π1(k) = v1 and Π2(k) = v2, then
Π1

⋃vcond

V,f Π2 will be a triple (V ′,Πr, f
′) such that Πr(k) = n

and JnKV
′

σ = Jvcond ? v1 : v2KV
′

σ . For instance, let us consider
the first conditional expression in rule r1 from Figure 8a.
Recursively analyzing the then and else branches yield two
different LLRs: one when read a == 0 holds and register
a receives the value 1, the other where register a keeps its
previous value. The merged LLR will associate to register a
the low-level action (a == 0) ? 1 : a.

Next, depending on whether conflicts occur or not, the effect
of rules are discarded or applied. The function K2Lsched

compiles a Kôika schedule into a LLR. Each rule is treated

K2L(a,Π, V, f, P, L], l]) =
match a with
| v → (v,Π, V, f, false, l])
| vx→ let v = Π(vx) in (v,Π, V, f, false, l])
| read r → let v = Π(r) in

let mr = may read](L], r) in

(v,Π, V, f,¬mr, l][(rd, r) ∨7−→ P ])
| write r a→

let (lla,Π, V, f, Fa, l
]) =

K2L(a,Π, V, f, P, L], l]) in
let mw = may write](L], l], r) in
let (V,Π, f) = (V [f 7→ lla],Π′[r 7→ f ], f + 1) in

(⊥,Π, V, f, Fa ∨ ¬mw, l][(wr, r)
∨7−→ P ])

| if c then ta else fa→
let (llacond,Π, V, f, Fcond, l

]) =
K2L(c,Π, V, f, P, L], l]) in

let (vcond, f) = (f, f + 1) in
let V = V [vcond 7→ llacond] in
let (llatb,Πtb, V, f, Ftb, l

]) =
K2L(ta,Π, V, f, P ∧ vcond, L], l]) in

let (llafb,Πfb, V, f, Ffb, l
]) =

K2L(fa,Π, V, f, P ∧ ¬vcond, L], l]) in
let (Πmerge, V, f) = Πtb

⋃vcond

V,f Πfb in

(llacond ? llatb : llafb,Πmerge, V, f,
Fcond ∨ (llacond ? Ftb : Ffb), l

])
| x := a→

let (lla,Π, V, f, F, l]) =
K2L(a,Π, V, f, P, L], l]) in

let (Π, V ) = (Π[x 7→ f ], V [f 7→ lla]) in
(⊥,Π, V, f + 1, F, l])

| let x = a in body →
let (lla,Π, V, f, Fa, l

]) =
K2L(a,Π, V, f, P, L], l]) in

let (Π, V ) = (Π[x 7→ f ], V [f 7→ lla) in
let (llabody,Π, V, f, Fbody, l

]) =
K2L(body ,Π, V, f + 1, P, L], l]) in

(llabody ,Π[x 7→ ⊥], V, f, Fa ∨ F body, l])

K2Lsched(s,Π, V, f, L]) =
match s with
| []→ (Π, V, f, L])
| r :: s→

let ( ,Π′, V, f, Fr, l
]) =

K2L(r,Π, V, f, true, L], l]0) in
let (vconflict , f) = (f, f + 1) in
let V = V [vconflict 7→ Fr] in
let (Πmerge, V, f) = Π

⋃vconflict

V,f Π′ in

let L]merge = λk → L](k) ∨ (l](k) ∧ ¬vconflict) in
K2Lsched(s,Πmerge, V, f, L

]
merge)

K2LP (s) =

let (Π, V, , ) = K2Lsched(s,Π0, V0, 1, L
]
0) in

{ R := fun r ⇒ Π(r); V := V }

Fig. 7: The Kôika to LLR compiler



sequentially. For each rule, we call K2L with the current
projection Π ant the current set of variables V , the current
abstract schedule log L] and an empty initial rule log l]0.
The failure condition Fr gives us the condition under which
the rule failed. Like in the conditional expression case, we
need to merge the projections using

⋃vconflict

V,f . We also need
to patch the abstract schedule log L]merge as described in
Figure 7 so that the condition under which a read or write
occurred is the disjunction of whether it already occurred in
the previous schedule log L] and whether it occurred in the
new rule log l], while not having a conflict. This step was
not needed in the if-then-else case because we injected the
condition (or its negation) in the path condition, which we
cannot do here because the failure condition is the result of
the compiler itself.

Figures 8b and 8c illustrate a complete example of com-
piling a Kôika schedule into a LLR. Initially, we have one
variable for each of the three registers a, b and c. The let-
bound variable x in rule r1 gives rise to v4 in the LLR, whose
value is v2, the initial value of register b. The conditions of
if-then-else actions also produce variables (v5, v8 and v13 in
our example). For each register write, a variable is created that
contains the low-level action being written (v6, v9 and v14),
and yet another variable is created that contains the new value
of the register, often an if-then-else low-level action dependent
on the path condition that led us to the write (v7, v10, and
v15). At the end of rule r1, v11 contains the rule’s failure
condition, i.e. v8 ∧ v5, i.e. ”there have been two writes on
a”; and v12 contains the value of register a after rule r1: ”if
the rule fails, the value of a is the same as at the beginning
of the cycle, otherwise it is the value after the second if”.
Similarly, v16 contains the failure condition for rule r2: ”the
rule fails if a write occurred in this rule (condition v13) and a
write occurred in rule r1 (¬v11 ∧ (v5 ∨ v8), i.e. rule r1 did
not fail and one of the writes occurred)”.

C. Correctness of the Kôika to LLR compiler

In order to reason on the LLR, we must ensure that
our compiler is correct. This section walks through a series
of definitions and lemmas that culminate in the proof of
Theorem 2, which enables to reason about a LLR to obtain
properties about a Kôika model.

We first define a relation
log∼ between a concrete and an

abstract log, which establishes that a read or write event occurs
in the concrete log if and only if the condition associated to
that event in the abstract log evaluates to true.

L
log∼ V L] ,{
∀r, wr(r, ∗) ∈ L ⇐⇒ JL](wr, r)KVσ = true

∀r, rd(r) ∈ L ⇐⇒ JL](rd, r)KVσ = true

We also define a relation
reg∼ between a concrete log and a

LLR. This relation states that the projection Π sends registers
to LLR variables that evaluate the same as performing a read
on that register in a Kôika action. This is captured by the
do read(l, σ, r) function, which returns a value v if wr(r, v) ∈
l, or σ(r) if no such write occurred.

l
reg∼ (Π, V ) ,
∀r, ∃n, Π(r) = n ∧ JnKVσ = do read(l, σ, r)

We now define a matching relation between Kôika states
(Γ, L, l) (variable environment, schedule log and rule log) and
LLR states (V,L], l]) (variable mapping, abstract schedule log
and abstract rule log). This relation, denoted ∼Π, is indexed
by a projection Π, and states that the concrete and abstract
logs are related by

log∼ V , both for the schedule and rule logs;
that the projection Π sends Kôika variables to LLR variables
that evaluate identically; and that the registers are accurately
projected by Π, as per the

reg∼ relation.
(Γ, L, l) ∼Π (V,L], l]) ,

L
log∼ V L]

l
log∼ V l]

∀x, ∃n, Π(x) = n ∧ JnKVσ = Γ(x)

(L ++ l)
reg∼ (Π, V )

We prove the following lemma, about the correctness of
the K2L function, which is the essence of the proof of the
compiler correctness theorem.

Lemma 1 (Correctness of K2L). Consider two matching
states (Γ, L, l) and (V,L], l]) related by projection ∼Π. Com-
piling action a with path condition P produces a low-level
action lla together with a new abstract state (V ′, L], l′

]
), and

a failure condition F .
If the Kôika semantics of action a produces a new Kôika

state (Γ′, v, l′), then the low-level action lla produced by the
compiler evaluates to Kôika value v, the failure condition F
evaluates to false, and (Γ′, L, l′) and (V ′, L], l′

]
) stay in the

matching relation.
Otherwise, if action a fails according to Kôika semantics,

the failure condition produced by the compiler evaluates to
true. More formally,
∀ a Π V f L] l] Γ L l lla P F Π′ V ′ f ′ l′] Γ′,

K2L(a,Π, V, f, P, L], l]) = (lla,Π′, V ′, f ′, F, l′
]
)⇒

(Γ, L, l) ∼Π (V,L], l])⇒ JP KVσ = true⇒
∀ l′ v Γ′,

Γ `L (l, a) ↓ (l′, v,Γ′)⇒
JllaKV

′

σ = v ∧ JF KV
′

σ = false ∧
(Γ′, L, l′) ∼Π′ (V ′, L], l′

]
)


∧(

Γ `L (l, a) 6 ↓⇒ JF KV
′

σ = true
)

Proof. By structural induction on a.

We can use this lemma to prove Theorem 1, about
K2Lsched:

Theorem 1 (Correctness of K2Lsched). K2Lsched is a correct
compiler of the semantics of Kôika schedules. More precisely,
∀ s Π V f L] Π′ V ′ f ′ L′

]
,

K2Lsched(s,Π, V, f, L]) = (Π′, V ′, f ′, L′
]
)⇒

(L, s) ⇓ L′ ⇒
L
log∼ V L] ∧ L reg∼ (Π, V )⇒

L′
log∼ V ′ L′

] ∧ L′ reg∼ (Π′, V ′)

Proof. By induction on the schedule s.



Registers : {a, b, c}.

Rule r1 :
let x := read b in
if read a == 0
then write a 1;

if x == 1
then write a (x + 1).

Rule r2 :
if read c == 1
then write a 3.

Schedule : [r1, r2].

(a) Kôika model

Register Variable Id
a 17
b 2
c 3

(b) LLR representation (R)

Id Value Description
1 a initial value of register a
2 b initial value of register b
3 c initial value of register c
4 v2 let-binding in r1
5 v1 == 0 first condition in r1
6 1 value written in the first if in r1
7 v5 ? v6 : v1 value of register a after first if in r1
8 v4 == 1 second condition in r1
9 v4 + 1 value written in the second if in r1
10 v8 ? v9 : v7 value of register a after second if in r1
11 v8 ∧ v5 failure condition for r1
12 v11 ? v1 : v10 value of register a after r1
13 v3 == 1 first condition in r2
14 3 value written in the if in r2
15 v13 ? v14 : v12 value of register a after the if in r2
16 v13 ∧ ¬ v11 ∧ (v5 ∨ v8) failure condition for r2
17 v16 ? v12 : v15 final value of register a after r2

(c) LLR representation (V )

Fig. 8: Compilation from Kôika to LLR

Base case. If the schedule is empty, the theorem holds
trivially because (Π′, V ′, L′

]
) = (Π, V, L]) and L′ = L.

Inductive case. The schedule is of the form r::sch, and we
have as an induction hypothesis that our theorem holds for
schedule sch.

By the definition of K2Lsched, we have that:
1 ( ,Π1, V1, f1, Fr, l

]) = K2L(r,Π, V, f, true, L], l]0)
2 V2 = V1[f1 7→ Fr]

3 (Πm, Vm, f2) = Π
⋃f1
V2,f1+1 Π′

4 L]m = λk → L](k) ∨ (l](k) ∧ ¬vconflict)

5 (Π′, V ′, f ′, L′
]
) = K2Lsched(sch,Πm, Vm, f2, L

]
m)

From the semantics of a Kôika schedule (Figure 2), the
next concrete schedule log, L′, will be either L++l′ if the
execution of r yields a rule log l′, or L if the execution of
a fails to produce a rule log. In order to apply our induction
hypothesis and finish the proof, all we need to show is that
L′

log∼ Vm L]m ∧ L′
reg∼ (Πm, Vm).

Applying Lemma 1 on line 1 above gives the following:
∀ L, L

log∼ V L] ∧ L reg∼ (Π, V )⇒ ∀ l′, Γ0 `L (l0, r) ↓ (l′, , )⇒
JFrKV1

σ = false ∧
l′
log∼ V1

l] ∧ (L ++ l′)
reg∼ (Π1, V1)


∧(

Γ0 `L (l0, r) 6 ↓⇒ JFrKV1
σ = true

)
By disjunction of cases:
• Case Γ0 `L (l0, r) ↓ (l′, , ).

Then, Jf1KV2
σ = false, hence Πm(k) = Π′(k) for every

k, and JL]m(k)KVm
σ = JL](k) ∨ l](k)KVm

σ for every k.
It follows that (L++l′)

log∼ Vm
L]m, and (L++l′)

reg∼
(Πm, Vm).

• Case Γ0 `L (l0, r) 6 ↓.
Then, Jf1KV2

σ = true, hence Πm(k) = Π(k) for every
k, and JL]m(k)KVm

σ = JL](k)KVm
σ for every k. It follows

that L
log∼ Vm L]m, and L

reg∼ (Πm, Vm).

Finally, the theorem we want to prove relates the inter-
pretation of a cycle and the LLR obtained by compiling the
schedule. We define a function Cσ(llr) which, given a LLR
llr and an initial mapping for registers σ, results in an updated
register environment σ′.
Cσ(llr)(r) , let n = llr.R(r) in JnKllr

σ

Theorem 2 (Kôika to LLR compiler correctness). Given a
schedule s and an initial state of registers σ, retrieving the
final value of a register r through the LLR compiled from
this schedule or through the Kôika semantics gives identical
results. More formally,

∀s σ r, Cσ(K2LP (s))(r) = interp cycle(s, σ)(r)

Proof. By applying Theorem 1 and applying definitions.

D. Verified transformation passes

In order to use the LLR we produced in the previous section
for proving properties, we develop a toolbox of theorems and
tactics in Coq for reasoning about circuits in our low-level
representation.

Among other things, we define a set of transformation
passes that can be applied to a model in the low-level represen-
tation. In particular, the transformation passes provide a way



of exploiting hypotheses about the state of the environment.
Often, a combination of simplifications and case analysis is
sufficient for discharging a goal. Note that the reasoning is
carried out inside of Coq, so the usual facilities and methods
used in this language remain available at any time.

For instance, consider the model of Figure 9a, composed of
a single rule. In this rule, the value of register b is updated on
every cycle. Suppose we want to prove that when the value of
a is 0 at the beginning of a cycle, then the value of b will be
0 at the end of this cycle. Formally, we would write this as:
∀ σ llr, σ(a) == 0⇒ Cσ(llr)(b) = 0.

We compile the model of Figure 9a into an equivalent
low-level representation, as shown in the second column of
Table 9b. This LLR is then processed by a sequence of trans-
formations which progressively simplify it. In this example,
we employ the following transformation passes:

• Prune(b): remove all variables that are not used in the
computation of the final value of register b. We collect
all the variables that may participate in the evaluation of
register b in our LLR, and prune the others. Here, the
register b is represented by v8. Variables v6 and v7 can
be pruned.

• ExploitReg(r,v): replace register r with value v. Ap-
plying this transformation generates a proof obligation,
namely that register r holds value v at the beginning of
the cycle. In our example, we have the hypothesis that
register a holds the value 0.

• Collapse: replace all variables with their value if this
symbolic value is simple enough (a constant, a reference
to another variable or a register). In our example, we
replace variables v1, v2 and v5 by their value.

• Simplify: compute the value of unary or binary op-
erations when enough of their arguments are known,
for all variables in the LLR. This is similar to constant
folding in traditional compilers. We also simplify boolean
conjunctions or disjunctions when one operand is known
to be true or false.

All of our transformation passes preserve the semantics
under some assumptions. For instance, assuming that the value
of register a is known to be 0 at the beginning of a cycle,
then replacing its appearances with 0 is correct. Coq verifies
that this assumption is met in the current context before it
can apply the transformation. Similarly, it would be invalid to
evaluate a register with a LLR in which some of the required
variables have been pruned away. Therefore, pruning can only
be applied in contexts where the final value of a single register
is being considered.

We offer additional transformation passes, such as:

• PruneList(l): remove all variables that are not used in
the computation of the final value of at least one register
appearing in list l

• ReplaceVar(x, v): replace variable x with value v,
given a proof that this substitution is correct

• ReplaceSubact(se, v): same as ReplaceVar but for
a subexpression se. All occurrences of this expression se

in any variable of the tree can then be replaced with the
given value v.

• ExploitPartialInformation: same as
ExploitReg but works when only some bits of
a register are known.

Coq makes it possible to define custom tactics to automate
away part of the tedium. We define some general tactics which
take our hypotheses into account and then attempt to simplify
our model as much as possible, and even recognize some
simple subgoals and solve those automatically. For simple
properties, proofs can run fully automatically.

IV. A CONCRETE EXAMPLE: IMPLEMENTING A VERIFIED
SHADOW STACK FOR A RISC-V PROCESSOR

In this section, we first explain the security mechanism we
aim to implement, i.e. a hardware-based shadow stack in a
RISC-V processor. We formally specify the properties we wish
to verify, then we give the outline of the proofs we performed,
using the methodology introduced in the previous section.

A. A RISC-V processor model in Kôika

Conveniently, Kôika includes a simple model of a pipelined
RISC-V processor that can be specialized to cover part of the
RV32I or the RV32E part of the standard. This model does
not aim for exhaustiveness and is not proven to conform to the
RISC-V specification (although it passes the test suite for all
the instructions it implements). It is used as a testing place and
a way to showcase Kôika’s more advanced features. Our model
is a slightly tweaked and expanded version of this example.

B. The shadow stack mechanism

Memory corruptions are still one of the most significant
vulnerabilities in software developed in low-level languages
like C or C++. Indeed, the developer is in charge of the
application memory management in those languages, which
can lead to spatial and temporal memory safety errors. Attack-
ers can exploit such vulnerabilities to leak confidential data
or modify the application’s intended behavior. For example,
they can exploit some buffer overflow on the stack to modify
return addresses, one of the most popular attacks of this type.
Hardware-based security mechanisms implementing Control
Flow Integrity, like Intel CET [27], are appealing solutions to
protect software against such attacks. They offer more robust
protection than software-based approaches, since software
attacks cannot modify them.

We are interested in the property that functions do indeed
return to the instruction following their call. A possible way of
guaranteeing such a property is to maintain a shadow stack.
The processor pushes the expected return address onto this
stack for each function call and pops it whenever it returns.
If the address a function tries to return to using the regular
function stack is not equal to the one on top of the shadow
stack, we can deduce that something went wrong and react
accordingly. Of course, we must also protect this shadow
stack and prevent regular writes to memory performed by
application code to modify the shadow stack contents.



Registers : {a, b}.

Rule r1 :
let x := read a in
let y := read b in
if x == 0 then

write b (y - y)
else

(write b 1; write a 2).

Schedule : [r1].

(a) Example rule

In
iti

al

P
r
u
n
e

(r
eg

a)

E
x
p
l
o
i
t
R
e
g

C
o
l
l
a
p
s
e

S
i
m
p
l
i
f
y

C
o
l
l
a
p
s
e

+
S
i
m
p
l
i
f
y

1 a 0
2 b
3 v1 == 0 0 == 0 1
4 v2 - v2 b - b
5 1
6 2
7 if v3 then a else v6
8 if v3 then v4 else v5 if v3 then v4 else 1 b - b

(b) Successive transformations

Fig. 9: Example rule, its transformation into a LLR, and successive transformations

Shadow stacks can be implemented either in software [19]
or in hardware. Although software implementations provide
some benefits (chief among them being their compatibility
with existing hardware), we will focus on hardware imple-
mentations. These offer the advantage of working with any
program without the need for patching.

We added a shadow stack module to the processor provided
by the Kôika project. We can prove its isolation from the
core model, in that the only way of acting on it is through
its two methods, push and pop. These methods are called
automatically when the current instruction corresponds to a
function call or return. They both expect one argument: the
address of the instruction following the current function call
for push and the stack’s return address for pop.

The push function checks for potential overflows and
pushes the address onto the shadow stack, whereas the pop
function checks for potential underflows, verifies that the
address passed as argument matches the top of the shadow
stack and pops it. If one of these checks fails, we jump to an
exception handler.

C. Detecting function calls and returns in machine code

Contrary to CISC (Complex Instruction Set Computer) ISAs
such as x86, which have dedicated call and return instructions,
RISC-V uses the same instruction for multiple purposes. This
choice is common for RISC (Reduced Instruction Set Com-
puter) ISAs. The JAL (jump and link) and JALR (jump and link
register) instructions implement both unconditional jumps and
function calls. However, the arguments that are passed to them
make their role clear. The Application Binary Interface (ABI)
describes which JAL/JALR instructions should be interpreted
as function calls or returns, depending on their arguments. In
fact, the RISC-V specification1 includes information regarding
how shadow stacks (which they call return-address stacks)
should behave:

1https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf, Unprivileged specification,
v.20191213, Sec.2.5

For RISC-V, hints as to the instructions’ usage are
encoded implicitly via the register numbers used. A
JAL instruction should push the return address onto a
return-address stack (RAS) only when rd = x1/x5.
JALR instructions should push/pop a RAS as shown
in the table [that follows].

rd rs1 rs1 = rd RAS action
!link !link − none
!link link − pop
link !link − push
link link 0 pop, then push
link link 1 push

Return-address stack prediction hints encoded in register specifiers used in
the instruction. [. . . ] link is true when the register is either x1 or x5.

Hence, we implement our shadow stack so that we push
a return address when the destination register is x1 or x5,
and we pop when the source register is x1 or x5 and the
destination register is different from the source register.2

D. Dealing with a detected stack buffer overflow

On a system with a full-fledged operating system, a stack
buffer overflow detected through a shadow stack mechanism
could be left for the system to manage. For instance, the
affected program could be killed, and an error could be logged
or displayed to the user. In our simple embedded system, these
options are not all open. The two main possibilities for our
exception handler are:
• ending the current execution;
• correcting the return address using the shadow stack

information (or just relying purely on it and ignoring
return arguments).

The latter option might be tempting. However, it comes with
significant downsides. If the return address has been modified,
then the rest of the stack has likely been impacted and cannot
be considered safe.

2Registers x1 and x5 are also respectively known as ra (for return address)
and t0.

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf


Our verified stack implementation halts execution on a
mismatch. In order to prove anything about our processor
halting, we first need to define what this means for Kôika
models — this is tricky since Kôika does not have a notion
of halting execution of a model. We consider that a system is
halted when it is in a sink state:

is halted(σ) , ∀n, r, Cnσ (llr)(r) = σ(r)

where Cnσ (llr) performs n iterations of the Cσ function, i.e.
computes the state of each register after n cycles. In fact, it
suffices to demonstrate the following property to obtain a proof
of is_halted for an environment.

nochange(σ) , ∀r, Cσ(llr)(r) = σ(r)
nochange halted(σ) : ∀σ, nochange(σ)⇒ is halted(σ)

We add a register called halt to our processor, and we
equip each of the rules with a guard checking the value of
this register. When it is true, no rules are run. We can prove
that it behaves as expected:

halt 1 implies halted :
∀σ, σ(halt) = 1⇒ is halted(σ)

Applying nochange_halted as well as transformation
passes ExploitReg, Simplify and Prune gets us most
of the way for this proof. We then need to show that the
value of any individual register is left unchanged during the
next cycle. At this stage, the demonstration of this property is
trivial.

For simulation and synthesis, we emit an external call bound
to a Verilog module which actually halts the execution of the
processor whenever we set the value of halt to 1.

E. Formally verified properties

We are interested in proving four properties. In plain En-
glish, they may be worded as:
• “any overflow in the shadow stack leads to the immediate

halting of the processor“;
• “any underflow in the shadow stack leads to the imme-

diate halting of the processor“;
• “when returning from a procedure, if the stack and the

shadow stack disagree on the return address, then the
processor halts immediately“;

• “in all other situations, the behavior of the processor
remains unchanged“.

Hereafter are some useful definitions about the shadow stack
(sstack) that we will use throughout our proof:

sstack empty(σ) , σ(sstack.sz) == 0

sstack full(σ) , σ(sstack.sz) == sstack.capacity

sstack top(σ) ,{
∅ if σ(sstack.sz) is 0
σ(sstack.stack[σ(sstack.sz)]) otherwise

Our processor is pipelined, which implies that several in-
structions are in-flight at the same time. Nonetheless, there is
at most one instruction at the execute stage at any point, and

it just so happens that all the calls to shadow stack functions
occur there.

Predicates sstack_push and sstack_pop express the
conditions under which a push or a pop takes place. Their
definitions (omitted here) simply amount to checking whether
the instruction in the execute stage is a call or a return instruc-
tion. The no_mispred construct is used for dealing with the
mispredictions that can result from branch instructions. The
effects of a mispredicted instruction have to be ignored. At
the point where an instruction reaches the execution stage of
the pipeline, it is already known whether or not it belongs to
a mispredicted branch and therefore whether or not it has to
be ignored. Function candidate_return_address gives
the address that the current instruction attempts to return to,
assuming it is a procedure return.

We give formal definitions for the first three properties we
mentioned earlier:

sstack uflow(σ) ,
no mispred(σ) ∧ sstack empty(σ) ∧ sstack pop(σ)

sstack oflow(σ) ,
no mispred(σ) ∧ sstack full(σ)
∧ ¬sstack pop(σ) ∧ sstack push(σ)

sstack violation(σ) ,
no mispred(σ) ∧ sstack pop(σ)∧
candidate return addr(σ) 6= sstack top(σ)

We show that these three ways of violating the shadow stack
policy result in the halting of the processor.
• sstack_uflow_implies_halt:
∀σ, sstack uflow(σ)⇒ is halted(Cσ(llr))

• sstack_oflow_implies_halt:
∀σ, sstack oflow(σ)⇒ is halted(Cσ(llr))

• sstack_addr_violation_implies_halt:
∀σ, sstack violation(σ)⇒ is halted(Cσ(llr))

The proofs of sstack_uflow_implies_halt,
sstack_oflow_implies_halt and
sstack_addr_violation_implies_halt share
some similarities. In all of them, we start by applying
halt_1_implies_halted. We then have to prove that
the final value of halt is 1. A logical first step is to
apply the Prune transformation pass: we don’t care about
the variables that are not relevant to the final value of
halt. We can also exploit our hypotheses. For instance, for
sstack_underflow_implies_halt, we know, among
other things, that the shadow stack is empty and that the
instruction in the execute stage of the pipeline corresponds
to a return instruction. We can exploit this information to
simplify the model further. Some case analysis is required to
fully exploit the information about the executed instruction.
Indeed, as was shown in IV-C, a pop should occur in two
situations:
• when rd is neither x1 or x5 and rs1 is either x1 or
x5;

• when both rd and rs1 are x1 or x5 but rd 6= rs1.



In all branches, the rest of the proof is trivial. The proofs
of the two other properties follow a similar pattern.

There still remains a last property to demonstrate. In order
to prove that our shadow stack does not interfere with the
rest of the processor, we need to show that, starting from the
same environment and after one cycle, in the absence of a
shadow stack violation, the value of the registers that were
not introduced for the shadow stack is the same in the vanilla
model as in the modified one.

Formally, we write this as:

sstack no interferences :
∀ σ, σ(halt) = 0⇒ ¬sstack violation(σ)⇒

¬sstack uflow(σ)⇒ ¬sstack oflow(σ)⇒
∀ r, r 6= sstack[·]⇒
Cσ(llr basic) = Cσ(llr sstack)

Once again, we start by exploiting some known values
through the ExploitReg transformation, and keep simplify-
ing the model with Simplify and Prune (using the variant
PruneList this time, with all the registers, except those that
are related to the shadow stack).

The shadow stack is only ever accessed from the rule
corresponding to the execute stage in our model. Furthermore,
accesses to the shadow stack do not modify registers of the ba-
sic Kôika model except for halt. The only variables specific
to the version equipped with a shadow stack that remain in
the LLR after the call to PruneList are those that impact
halt. However, it can be shown that ¬stack violation

implies that the value written to halt is 0. In other words,
the write in question does not update the value of halt.
Therefore, some surgical applications of ReplaceVar allow
us to remove precisely the parts which differ between our two
models. Then, our two LLRs are equal, and the goal is trivially
true.

F. Quantitative summary of the proof effort

At the time of this writing, the proof framework is composed
of around 19k lines of Coq, with about half of it being related
to the Kôika to LLR compiler or to its correctness proof, and
most of the rest being related to transformation passes and the
associated proofs of correctness.

The properties we described in this section took around 2k
lines of Coq to prove. Complete verification of the proofs takes
around 10 minutes and uses a substantial amount of RAM
(around 16GB) on a 12th Gen Intel i5 processor running at
4.4GHz with 32GB of RAM.

V. EXPERIMENTAL EVALUATION

a) Simulation of Kôika with Cuttlesim: We verify the
overall functional correctness of our modified RISC-V proces-
sor by running it on Cuttlesim, the C++ simulator provided
by the Kôika project that directly interprets and simulates
the Kôika language. We run a test suite that targets all the
instructions in the RV32I subset separately. All the tests
provided with the original Kôika still pass with our modified
processor.

void bad(){
puts("Bad!\n");

}
int f(char* s){
char buf[16];
strcpy(buf,s);

}
int main(int argc, char** argv){

int attack_buf[6];
attack_buf[5] = (intptr_t)&bad;
f((char*)attack_buf);

}

Fig. 10: Vulnerable program that overwrites its return address

b) Experimental validation of the shadow stack: Even
with the proof of Section III, it is valuable to test whether
a trivial overwriting of a function’s return address is indeed
detected by our shadow stack. This cross-validates that the
theorems we proved earlier indeed entail a security property.

Figure 10 shows a C program that exhibits a trivial buffer
overflow. Buffer buf in function f is 16-byte long, and
the strcpy function performs no bounds checking before
copying the buffer attack_buf, which is 24-byte long.
Because we know the memory layout of this program, we
know where in attack_buf we should place the address
we want to jump to so that it will overwrite the vulnerable
function’s return address. Our shadow stack module should
detect this violation and halt our processor before we even
jump to that new return address. We run this program with the
Cuttlesim simulator, once with the shadow stack deactivated
and once with the shadow stack activated. In the first case,
the buffer overflow succeeds, and we observe that the program
writes the string "Bad!" to the console. On the other hand,
when run with the shadow stack activated, we observe that
the execution exits abruptly. By inspecting the final state of
the Kôika model manually, we see that the halt register is
set, and the instruction that was being executed at that point
is precisely the ret instruction in the f function.

c) Synthesis on the TinyFPGA BX board: We success-
fully ran the Verilog output of the Kôika compiler on our
modified RISC-V processor through the Yosys synthesis suite.
The shadow stack that we could fit on this board, in addition
to the processor model, has a capacity of only seven return
addresses and incurs an overhead of 5.9 % in the number of
logical cells (LUTs) used on the FPGA. This limitation in
size is only due to the limited number of LUTs and quantity
of internal RAM of this inexpensive FPGA.

Shadow Clock Used logical Critical
stack frequency cells path

(MHz) (out of 7680) (ns)
Without 22.07 7049 (91%) 45.4

With 20.49 7463 (97%) 48.8



VI. RELATED WORK

We now discuss related lines of work and how they differ
from our results.

a) ISA-level security proofs: ISAs are the specification
that CPUs must implement. Thus, they form the foundation for
software-level security. As such, there have been multiple re-
cent works focusing on proving security properties at the ISA
level. One such prominent line of work aims to prove various
security properties for capability-enabled ISAs. Nienhuis et
al. [24] prove capability monotonicity for CHERI-MIPS while
Bauereiss et al. [4] prove it for the Arm Morello prototype.
The work of Georges et al. [11], [12] and Skorstengaard et
al. [28], [29] prove a variety of stack safety properties that can
be enforced on capability machines. Similarly, Van Strydonck
et al. [30] develop a library of verified wrappers around drivers
leveraging capabilities for enforcing security properties. While
these works also define and prove security properties about
hardware, all their reasoning is done at the ISA level and
must thus assume that the ISA is correctly implemented in
hardware. In contrast, we reason at the register transfer level,
which is much closer to the concrete hardware.

b) HDLs for security: There have been multiple HDLs
proposed in the literature for securely designing circuits. For
instance, Caisson [22] and SecVerilog [33] are both HDLs
that use information-flow types to ensure that generated cir-
cuits are secure. Similarly, Iodine [13] and Xenon [14] use
SMT-solvers to check that cryptographic circuits execute in
constant time. While these approaches allow to prove specific
security properties, they cannot be used to prove more general
properties related to the execution of a CPU like our work
does. Furthermore, using a proof assistant like we do has a
lighter TCB footprint.

c) Formal languages compiled to Verilog: As mentioned
earlier, this work uses the Kôika [5] language and its for-
malization to implement, specify and verify a shadow stack.
Kami [7] is another language with formal semantics that can be
compiled down to Verilog. Kami was developed by the same
team who published Kôika and follows the same rule-based
approach. However, the project is not actively maintained
since Kôika offers a more precise cycle-accurate approach.
Vericert [16] is a formally verified high-level synthesis tool
based on CompCert that transforms C code into Verilog, but
lacks support for implementing pipelines, which is crucial
for implementing efficient CPUs. Similarly, HOL4 [23] has
also been used for the verified synthesis of Verilog code.
Specifically, it has been used for designing an in-order CPU
implementing a custom instruction set. Unlike our work,
theirs is not concerned with security mechanisms, and it is
unknown whether they could actually implement an efficient
and pipelined CPU.

d) Micro-architectural security proofs: Erbsen et al. [10]
describe the implementation of a certified IoT lightbulb in
Kami. This work also blends formal verification of hardware
and software. The main theorem it defines relates to the
validity of the behavior of the application controlling the
lightbulb. Properties about the hardware, compiler, drivers, and

applications are formally verified and contribute to the final
proof. Since those elements may vary independently of the
others, special attention was given to the proof modularity.
However, this work does not focus on security properties and
relies on Kami, which does not have cycle-accurate semantics.

Knox [3] is a framework for building high assurance
hardware security modules (HSM). It can be used to prove
that a Verilog implementation correctly refines a functional
specification defined as a state machine using an SMT solver.
In contrast to our work, theirs is specific to HSM and cannot
be used to prove general-purpose security properties.

VII. LIMITATIONS AND FUTURE WORK

A. Limitations

1) Sensitivity of the LLR: Some transformation passes such
as ReplaceVar (see III-D) take ids of LLR variable as argu-
ment. Proofs using these passes are very sensitive to changes
to the model and tend to break even when changes occur
in unrelated parts of the model. A way around this problem
would be to allow referring to variables through a more
persistent naming scheme. We have made some preliminary
experiments for improving the maintainability of our proofs
by automatically generating labels to the variables based on
their roles.

2) Kôika and memory: Kôika does not offer a way of
using the Block RAM of FPGAs. All the registers of a Kôika
model are stored in the usually much smaller LUTs (lookup
tables). It is always possible to build an interface to BRAM
using external calls, as was done for the data and instruction
memory in the RISC-V example, but this makes reasoning
about memory accesses harder.

3) Partial interpretation in Coq: We ran into issues with
Coq’s partial interpretation mechanism while working on the
proof of the shadow stack, as we mentioned in Section II-B.
The Coq tactics such as cbv, cbn, vm_compute, which
perform computation on Coq terms, do not allow the users
to have fine-grained control on the evaluation process. When
the terms we try to compute are very large and contain
variables rather than ground terms, Coq’s evaluation engine
becomes unusably slow. We see two possible remediations
to this problem. The first is to find a way to implement
a computation tactic in Coq that supports so-called partial
interpretation, i.e. computing with variables. The second is
to make our compilation to LLRs and transformations of
LLRs more aggressive so that fewer variables appear in these
representations, and fewer occasions to trap the evaluation
tactics in costly computations.

4) Configuration of the security mechanism: In the current
stage of our implementation, the shadow stack mechanism is
hard coded in the hardware design. Such an approach means
that parameters, such as the size of the shadows stack, cannot
be adjusted at runtime. Moreover, there is only one shadow
stack. These choices ease the verification of the mechanism
and are consistent with the type of processor we use, which
correspond to a microcontroller without privileged mode. Such
a CPU often executes a single application in an embedded



device. An interesting extension would be to provide some
configuration mechanisms to adapt the mechanism at run-
time. Obviously, this configuration mechanism must not be
accessible to untrusted application code. Thus, this requires
considering a more complex CPU with privileged execution
mode and OS support. This evolution also poses the challenge
of formal reasoning on the interaction between hardware and
some trusted code, i.e. OS kernel code.

5) Handling of security property violations: Currently, a
violation of a security property results in the halting of the
processor. This is rather abrupt, but it helped us validate
our approach. A more adequate response would be to emit
a hardware exception that an operating system could handle
at its discretion.

B. Future work

1) Functional verification: There is an official formal ver-
sion of the RISC-V specification based on the Sail lan-
guage [2], which includes facilities to export definitions to
Coq. Proving that our processor design conforms to this
specification would be a logical next step.

2) Generalizing the processor model: The processor we are
targeting is quite simple (unprivileged ISA, 32 bits, minimal
extensions). We could generalize our results by working with
a family of processors instead of a single concrete instance.
Our proof should work mostly the same way for any legal
combination of RISC-V extensions. We have progressed in
generalizing the processor model by generating a Kôika pro-
cessor model from a list of RISC-V extensions. However, the
semantics of many new instructions are yet to be defined.
Moreover, we were limited in our implementation by the fact
that only the unprivileged part of the specification had been
implemented. Adding support for the privileged part of the
specification would open possibilities for interacting with the
operating system.

3) Other security mechanisms: Another research direction
would be to consider more ambitious security mechanisms,
such as a more complex version of shadow stacks or capa-
bilities. We would also like to tackle security mechanisms
requiring proper software configuration, e.g. the isolation
mechanism provided by OS kernels or hypervisors leveraging
hardware features. Such approaches require formalizing the
interactions between software and hardware components [21].

4) Timing side-channels: Kôika’s semantics is cycle ac-
curate. This makes it possible to reason about some forms
of timing side-channels. Targeting mechanisms that enforce
more complex policies, such as Information Flow Tracking
mechanisms, is more challenging. Indeed, such mechanisms
are supposed to guarantee some forms of non-interference,
which correspond to predicates on sets of traces, i.e., hyper-
properties [9].

VIII. CONCLUSION

In this paper, we propose a methodology for building
synthesizable hardware with formally verified security mech-
anisms. We base our work on the Kôika formal Hardware

Description Language, which we modify in depth to make it
practical for reasoning on hardware models. We implement a
verified compiler from Kôika models to a lower-level, more
explicit representation, which is more amenable to proving. In
addition, we define a set of verified transformation passes on
these low-level representations that can be applied to simplify
objects in this representation, as needed for each proof.

We then apply our methodology to the implementation
of a verified shadow stack for a simple pipelined RISC-
V processor. We prove some security properties about our
implementation. Notably, we show that detecting the overwrite
of a return address results in the halting of the processor. This
result is further confirmed by simulating the processor and
running a simple example code performing a buffer overflow,
which is indeed detected by our shadow stack.

While the security mechanism verified here is relatively
simple, it forms the foundation for possible future work and
exemplifies how more complex mechanisms could be tackled.
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