Lean cheat sheet

1. Constructs

Symbol Notation Type name Destruction* Construction** Computational equivalent
A \and And obtain (x,y) constructor Product type
v \or Or obtain x|y left, right Sum type
- \-> =1 apply intro Function type
« \iff Iff obtain (x,y) constructor Bijection
False False False destruct -2 Empty type
True True True destruct constructor Unit type
v \forall = apply intro Dependent function type
3 \exists Exists choose exists Dependent pair (type x proof)
obtain (a,ha)
= = Eq rw [x] rfl Identity type
+ \neq = apply intro - (nothing interesting)
*Using match is an option for all non-fundamental types TFundamental type
**Direct use of constructors is an option for all non-fundamental types 2False does not have constructors

3x £y is short for (x=y) — False
2. More taCtICS (also see the tactic reference and the tactic language chapters in the Lean Language Reference)

Name Effect Example/comment
apply applies alemma or atheorem apply h
rw replaces (sub)terms with something equivalent rw [h1, « h2]
simp automatically applies rw steps simp [defl, def2];@[simp] tag
unfold replaces a term with its definition unfold def
have introduces a subproof have h : 0 = 0 := by rfl
let introduces a hypothesis let e := 8 + C
constructor applies the first compatible constructor may pick the wrong constructor!
injection uses injectivity of inductive constructors a::b = c::diffa = candb = d
exfalso replaces the goal with False useful for applying inequalities
cases/match proof by cases same syntax as match
induction proof by induction (stronger) induction h with

apply vs. rw: apply replaces a hypothesis/conclusion, rw swaps one of it subterms for something equivalent.
apply: if the conclusion is C, applying a hypothesis of the form A — B — C(can be read as "give me a proof of A and a proof of B
and I'll give you a proof of C”) leaves you with two branches: one for proving A, one for proving B.

rw: if you know that a = b, then you can turn the goal/hypothesisa + ¢ = a

3. Commands —bintob + c = b - b

fiprint x:see the definition of x4, - Forward vs. backward reasoning
#check x: see the type of x

Forward reasoning: from the hypotheses to the conclusion
#eval x: compute x

Backward reasoning: from the conclusion to the hypotheses (default in Lean)

5 Syntax reference at keyword for forward reasoning; e.g, apply h at h2 orrw [h] at h2.
def name structure Coords where
(argl arg2: typel) (arg3: type2) X: N
type := y: N
match arg2 with def p := {x =2, y := 8}
| casel c_argl c_arg2 => c_argl + c_arg2))
| case2 => other_function arg3 argl inductive MyNat where
Note that cases and induction uses the same syntax as match. | zero
| succ (pred: MyNat)
lemma modus_ponens open MyNat
{A B: Prop} (H: A - B) : A = B def one := succ zero
: =. by open brings the constructors of the type in the global
intro a; apply H; apply a namespace

(H: X)vs. {H: X}:the first needs to be passed explicitly, the second can be deduced by Lean (or passed explictly through the
@ syntax, e.g, @amodus_ponens (even a) (even (S (S a))) even_plus_two_even).

https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/
https://lean-lang.org/doc/reference/latest/Tactic-Proofs/The-Tactic-Language/
https://lean-lang.org/doc/reference/latest/Tactic-Proofs

	Constructs
	More tactics (also see the tactic reference and the tactic language chapters in the Lean Language Reference)
	Commands
	Forward vs. backward reasoning
	Syntax reference

