
Lean cheat sheet1. Constructs
Symbol Notation Type name Destruction* Construction** Computational equivalent

∧ \and And obtain ⟨x,y⟩ constructor Product type
∨ \or Or obtain x|y left, right Sum type

→ \-> –¹ apply intro Function type
↔ \iff Iff obtain ⟨x,y⟩ constructor Bijection

False False False destruct -² Empty type
True True True destruct constructor Unit type

∀ \forall –¹ apply intro Dependent function type
choose
obtain ⟨a,ha⟩

= = Eq rw [x] rfl Identity type
≠ \neq –³ apply intro - (nothing interesting)

∃ \exists Exists exists Dependent pair (type x proof)

*Using match is an option for all non-fundamental types
**Direct use of constructors is an option for all non-fundamental types

¹Fundamental type
²False does not have constructors
³x ≠ y is short for (x=y) → False

2. More tactics (also see the tactic reference and the tactic language chapters in the Lean Language Reference)

Name Effect Example/comment
apply applies a lemma or a theorem apply h

rw replaces (sub)terms with something equivalent rw [h1, ← h2]
simp automatically applies rw steps simp [def1, def2]; @[simp] tag

unfold replaces a term with its definition unfold def
have introduces a subproof have h : 0 = 0 := by rfl
let introduces a hypothesis let e := 8 + c

constructor applies the first compatible constructor may pick the wrong constructor!
injection uses injectivity of inductive constructors a::b = c::d iff a = c and b = d

exfalso replaces the goal with False useful for applying inequalities
cases/match proof by cases same syntax as match
induction proof by induction (stronger) induction h with

apply vs. rw: apply replaces a hypothesis/conclusion, rw swaps one of it subterms for something equivalent.
apply: if the conclusion is C, applying a hypothesis of the form A → B → C (can be read as ”give me a proof of A and a proof of B
and I’ll give you a proof of C”) leaves you with two branches: one for proving A, one for proving B.

3. Commands
#print x: see the definition of x
#check x: see the type of x
#eval x: compute x

rw: if you know that a = b, then you can turn the goal/hypothesis a + c = a
- b into b + c = b - b.

4. Forward vs. backward reasoning
Forward reasoning: from the hypotheses to the conclusion
Backward reasoning: from the conclusion to the hypotheses (default in Lean)
at keyword for forward reasoning; e.g., apply h at h2 or rw [h] at h2.5. Syntax reference

def name
(arg1 arg2: type1) (arg3: type2)

: type :=
match arg2 with
| case1 c_arg1 c_arg2 => c_arg1 + c_arg2
| case2 => other_function arg3 arg1

Note that cases and induction uses the same syntax as match.

lemma modus_ponens
{A B: Prop} (H: A → B) : A → B

:= by
intro a; apply H; apply a

structure Coords where
x: ℕ
y: ℕ

def p := {x := 2, y := 8}

inductive MyNat where
| zero
| succ (pred: MyNat)
open MyNat
def one := succ zero
open brings the constructors of the type in the global
namespace.

(H: X) vs. {H: X}: the first needs to be passed explicitly, the second can be deduced by Lean (or passed explictly through the
@ syntax, e.g., @modus_ponens (even a) (even (S (S a))) even_plus_two_even).

cheatsheet v1.0.1 for Lean 4.21, matthieub@hi.is

https://lean-lang.org/doc/reference/latest/Tactic-Proofs/Tactic-Reference/
https://lean-lang.org/doc/reference/latest/Tactic-Proofs/The-Tactic-Language/
https://lean-lang.org/doc/reference/latest/Tactic-Proofs

	Constructs
	More tactics (also see the tactic reference and the tactic language chapters in the Lean Language Reference)
	Commands
	Forward vs. backward reasoning
	Syntax reference

