Lean cheat sheet

1. Constructs

Symbol	Notation	Type name	Destruction*	Construction**	Computational equivalent
\wedge	\and	And	obtain $\langle x,y \rangle$	constructor	Product type
V	\or	Or	obtain x y	left,right	Sum type
\rightarrow	\->	_1	apply	intro	Function type
\leftrightarrow	\iff	Iff	$obtain \langle x,y \rangle$	constructor	Bijection
False	False	False	destruct	_2	Empty type
True	True	True	destruct	constructor	Unit type
\forall	\forall	_1	apply	intro	Dependent function type
3	\exists	Exists	choose obtain $\langle a, ha \rangle$	exists	Dependent pair (type x proof)
=	=	Eq	rw [x]	rfl	Identity type
#	\neq	_3	apply	intro	- (nothing interesting)

^{*}Using match is an option for all non-fundamental types

2. More tactics (also see the tactic reference and the tactic language chapters in the Lean Language Reference)

Name	Effect	Example/comment
apply	applies a lemma or a theorem	apply h
rw	replaces (sub)terms with something equivalent	rw[h1, ← h2]
simp	automatically applies rw steps	simp [def1, def2]; @[simp] tag
unfold	replaces a term with its definition	unfold def
have	introduces a subproof	have h : 0 = 0 := by rfl
let	introduces a hypothesis	let e := 8 + c
constructor	applies the first compatible constructor	may pick the wrong constructor!
injection	uses injectivity of inductive constructors	a::b = c::d iff a = c and b = d
exfalso	replaces the goal with False	useful for applying inequalities
cases/match	proof by cases	same syntax as match
induction	proof by induction (stronger)	induction h with

apply vs. rw: apply replaces a hypothesis/conclusion, rw swaps one of it subterms for something equivalent. apply: if the conclusion is C, applying a hypothesis of the form $A \to B \to C$ (can be read as "give me a proof of A and a proof of B and I'll give you a proof of C") leaves you with two branches: one for proving A, one for proving B.

3. Commands

#print x: see the definition of x
#check x: see the type of x
#eval x: compute x

intro a; apply H; apply a

- b into b + c = b - b. 4. Forward vs. backward reasoning

Forward reasoning: from the hypotheses to the conclusion Backward reasoning: from the conclusion to the hypotheses (default in Lean) at keyword for forward reasoning; e.g., apply h at h2 or rw [h] at h2.

rw: if you know that a = b, then you can turn the goal/hypothesis a + c = a

5. Syntax reference

```
def name
  (arg1 arg2: type1) (arg3: type2)
: type :=
  match arg2 with
  | case1 c_arg1 c_arg2 => c_arg1 + c_arg2
  | case2 => other_function arg3 arg1
Note that cases and induction uses the same syntax as match.
lemma modus_ponens
  {A B: Prop} (H: A → B) : A → B
```

```
structure Coords where
    x: N
    y: N
def p := {x := 2, y := 8}

inductive MyNat where
| zero
| succ (pred: MyNat)
open MyNat
def one := succ zero
open brings the constructors of the type in the global
```

(H: X) vs. {H: X}: the first needs to be passed explicitly, the second can be deduced by Lean (or passed explicitly through the @ syntax, e.g., @modus_ponens (even a) (even (S (S a))) even_plus_two_even).

^{**}Direct use of constructors is an option for all non-fundamental types

¹Fundamental type

²False does not have constructors ³ $x \neq y$ is short for $(x=y) \rightarrow False$